Download full-text PDF

Source

Publication Analysis

Top Keywords

[isolation riboflavin-deficient
4
riboflavin-deficient mutants
4
mutants saccharomyces
4
saccharomyces cerevisiae]
4
[isolation
1
mutants
1
saccharomyces
1
cerevisiae]
1

Similar Publications

Riboflavin analogs lacking one methyl group (7α or 8α) can still serve as a surrogate for riboflavin in riboflavin-deficient microorganisms or animals. The absence of both methyl groups at once completely abolishes this substitution capability. To elucidate the molecular mechanisms behind this phenomenon, we performed an adaptive laboratory evolution experiment (in triplicate) on an strain auxotrophic for riboflavin.

View Article and Find Full Text PDF

Riboflavin-overproducing mutants of the flavinogenic yeast Candida famata are used for industrial riboflavin production. This paper describes the development of an efficient transformation system for this species. Leucine-deficient mutants have been isolated from C.

View Article and Find Full Text PDF

Two riboflavin-deficient (rib5) Saccharomyces cerevisiae expression systems have been developed to investigate the influence of riboflavin structural alterations on the covalent flavinylation reaction and activity of recombinant human liver monoamine oxidases A and B (MAO A and B). Nineteen different riboflavin analogues were tested with MAO A and nine with MAO B. MAO expression and flavinylation were determined immunochemically with antisera to MAO and an anti-flavin antisera.

View Article and Find Full Text PDF

6-(p-dimethylaminophenylazo)benzothiazole (6BT) is an unusually potent rat hepatocarcinogen, producing large malignant liver tumours after only 2-3 months of dietary administration in a riboflavin-deficient diet. This azocarcinogen has been evaluated in a Big Blue F344 transgenic rat (lacI) gene mutation assay. In a reproduction of the early stages of the carcinogenesis bioassay of this agent, rats were maintained on a riboflavin-deficient diet and were given 10 consecutive daily doses of 6BT (10 mg/kg) by oral gavage.

View Article and Find Full Text PDF

We studied the role of FAD in the intramitochondrial folding and assembly of medium-chain acyl-CoA dehydrogenase (MCAD), a homotetrameric mitochondrial enzyme containing a molecule of non-covalently bound FAD/monomer. In the MCAD molecule, FAD is buried in a crevice containing the active center. We have previously shown that upon import into mitochondria, newly processed MCAD is first incorporated into a high molecular weight (hMr) complex and that the hMr complex mainly consisted of MCAD-heat-shock protein 60 (hsp60) complex (Saijo, T.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!