Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/tbme.1979.326561 | DOI Listing |
Anal Chem
January 2025
International Joint Laboratory for Integrated Circuits Design and Application, Ministry of Education, School of Physics, Zhengzhou University, Zhengzhou 450001, China.
The photoacoustic spectroscopy (PAS) system commonly enhances the efficiency of optical-acoustic-electrical energy conversion by increasing the laser power, optimizing the resonance characteristics of the photoacoustic cell (PAC), and improving the sensitivity of acoustic sensors. However, conventional systems using a single-microphone or a dual-microphone differential setup for point sampling of the photoacoustic signal fail to account for its spatial distribution, leading to a loss of spatial gain. Drawing on microphone array theory derived from sonar technology, this study, for the first time, presents a PAS sensing system based on a four-microphone array, which is applied to detect chloroform gas.
View Article and Find Full Text PDFACS Sens
January 2025
Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, Henan International Joint Laboratory of Smart Molecules and Identification and Diagnostic Functions, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China.
Hypochlorous acid can be employed as a biomarker for blood infection (such as sepsis) and tissue damage (such as drug-induced liver injury, DILI), and the diagnosis of tissue damage or blood infection can be achieved through the detection of hypochlorous acid in relevant biological samples. Considering the complex environment and the diverse interferences in living organisms and blood plasma, developing new detection methods for HClO with high signal-to-background ratios is particularly important, and it can improve the accuracy of detection and quality of imaging based on a higher contrast, which makes the detection of HClO clearer and more accurate. Here, based on the advantages of the NIR fluorescence/photoacoustic dual-modal probe, we reported a hypochlorous acid-activatable NIR fluorescence/photoacoustic dual-modal probe (NIRF-PA-HClO) based on the spirolactam ring-opening strategy in this paper.
View Article and Find Full Text PDFActa Pharm Sin B
December 2024
Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism and Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China.
Cervical cancer, the most common gynecological malignancy, significantly and adversely affects women's physical health and well-being. Traditional surgical interventions and chemotherapy, while potentially effective, often entail serious side effects that have led to an urgent need for novel therapeutic methods. Photothermal therapy (PTT) has emerged as a promising approach due to its ability to minimize damage to healthy tissue.
View Article and Find Full Text PDFJ Biophotonics
January 2025
The Richard and Loan Hill Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, Illinois, USA.
The use of photoacoustic brain imaging for hemorrhage detection holds significant clinical importance. This study focuses on the performance of sensitivity and detection capabilities of a single-element scanning system, considering the remarkable signal-to-noise ratio of photoacoustic signals generated by a single-element transducer. By employing blood vessel-like phantoms and ex vivo brain phantoms, we demonstrated the superior efficacy of the single-element scanning method over the transducer array system in the context of brain hemorrhage detection.
View Article and Find Full Text PDFPhotoacoustics
February 2025
Institute of Fiber Optics, Shanghai University, Shanghai 201800, China.
Photoacoustic imaging (PAI) is an emerging hybrid imaging technology that combines the advantages of optical and ultrasound imaging. Despite its excellent imaging capabilities, PAI still faces numerous challenges in clinical applications, particularly sparse spatial sampling and limited view detection. These limitations often result in severe streak artifacts and blurring when using standard methods to reconstruct images from incomplete data.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!