In view of the variables that obscure the pathogenesis of cardiomyopathy, a study was undertaken in mongrel dogs fed ethanol as 36% of calories for up to 22 mo. Both the experimental and control groups maintained body weight, hematocrit, plasma vitamin, and protein levels. Left ventricular function was evaluated in the intact anesthetized dog using indicator dilution for end-diastolic and stroke volume determinations. During increased afterload with angiotensin, the ethanol group exhibited a larger rise of end-diastolic pressure (P<0.01), whereas end-diastolic and stroke volume responses were significantly less than in controls. Preload increments with saline elicited a significantly higher end-diastolic pressure rise in the ethanol group (P<0.01). No hypertrophy, inflammation, or fibrosis was present and it was postulated that the enhanced diastolic stiffness was related to accumulation of Alcian Blue-positive material in the ventricular interstitium. To evaluate myocardial lipid metabolism, [1-(14)C]oleic acid was infused systemically. Plasma specific activity and myocardial lipid uptake were similar in both groups. There was a significantly increased incorporation of label into triglyceride, associated with a reduced (14)CO(2) production, considered the basis for a twofold increment of triglyceride content. In addition, diminished incorporation of [(14)C]oleic acid into phospholipid was observed accompanied by morphologic abnormalities of cardiac cell membranes. Potassium loss and sodium gain, like the lipid alteration, was more prominent in the subendocardium. Thus, chronic ethanol ingestion in this animal model is associated with abnormalities of ventricular function without evident malnutrition, analogous to the preclinical malfunction described in the human alcoholic.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC301608PMC
http://dx.doi.org/10.1172/JCI107812DOI Listing

Publication Analysis

Top Keywords

myocardial function
4
function lipid
4
lipid metabolism
4
metabolism chronic
4
chronic alcoholic
4
alcoholic animal
4
animal view
4
view variables
4
variables obscure
4
obscure pathogenesis
4

Similar Publications

Inflammatory responses and lipid metabolism disorders are key components in the development of coronary artery disease and contribute to no-reflow after coronary intervention. This study aimed to investigate the association between the neutrophil to high-density lipoprotein ratio (NHR) and no-reflow phenomenon in ST-segment elevation myocardial infarction (STEMI) patients after primary percutaneous coronary intervention (PPCI). This study enrolled 288 patients with STEMI from September 1st, 2022 to February 29th, 2024, in the Zhengzhou Central Hospital Affiliated to Zhengzhou University.

View Article and Find Full Text PDF

Electrical stimulation of existing three-dimensional bioprinted tissues to alter tissue activities is typically associated with wired delivery, invasive electrode placement, and potential cell damage, minimizing its efficacy in cardiac modulation. Here, we report an optoelectronically active scaffold based on printed gelatin methacryloyl embedded with micro-solar cells, seeded with cardiomyocytes to form light-stimulable tissues. This enables untethered, noninvasive, and damage-free optoelectronic stimulation-induced modulation of cardiac beating behaviors without needing wires or genetic modifications to the tissue solely with light.

View Article and Find Full Text PDF

The clinical application of doxorubicin (DOX) is limited due to its cardiotoxicity, which is primarily attributed to its interaction with iron in mitochondria, leading to lipid peroxidation and myocardial ferroptosis. This study aimed to investigate the role of the gut microbiota-derived metabolite, indole-3-lactic acid (ILA), in mitigating DOX-induced cardiotoxicity (DIC). Cardiac function, pathological changes, and myocardial ferroptosis were assessed in vivo.

View Article and Find Full Text PDF

TLR4 Inhibition Attenuated LPS-Induced Proinflammatory Signaling and Cytokine Release in Mouse Hearts and Cardiomyocytes.

Immun Inflamm Dis

January 2025

Division of Physiology, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway.

Background: Sepsis is associated with myocardial injury and early mortality. The innate immune receptor Toll-like receptor 4 (TLR4) can recognize pathogen-associated-molecular-patterns (PAMPs) and damage-associated molecular patterns (DAMPs); the latter are released during tissue injury. We hypothesized that TLR4 inhibition reduces proinflammatory signaling and cytokine release in: (1) LPS or Escherichia coli-treated isolated mouse heart; (2) LPS-treated mouse primary adult cardiomyocytes; and (3) the isolated heart during ischemia-reperfusion.

View Article and Find Full Text PDF

Coronary microvascular dysfunction (CMD) refers to clinical symptoms caused by structural and functional damage to coronary microcirculation. The timely and precise diagnosis of CMD-related myocardial ischemia is essential for improving patient prognosis. This study describes a method for the multimodal (fluorescence, ultrasonic, and photoacoustic) noninvasive imaging and treatment of CMD based on ischemic myocardium-targeting peptide (IMTP)-guided nanobubbles functionalized with indocyanine green (IMTP/ICG NBs) and characterizes their basic characteristics and in vitro imaging and targeting abilities.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!