Download full-text PDF

Source
http://dx.doi.org/10.1093/jnci/51.5.1689DOI Listing

Publication Analysis

Top Keywords

malignant mouse-liver
4
mouse-liver tumors
4
tumors resembling
4
resembling human
4
human hepatoblastomas
4
malignant
1
tumors
1
resembling
1
human
1
hepatoblastomas
1

Similar Publications

MAF1 inhibits hepatocarcinogenesis by fostering an immunostimulatory tumor microenvironment.

J Immunother Cancer

January 2025

State Key Laboratory of Oncology in South China, and Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China

Background: The biological significance of MAF1, a tumor suppressor, in carcinogenesis and immune response of hepatocellular carcinoma (HCC) remains unreported. Understanding the underlying mechanisms by which MAF1 enhances anti-tumor immunity in HCC is crucial for developing novel immunotherapy strategies and enhancing clinical responses to treatment for patients with HCC.

Methods: Mice were subjected to hydrodynamic tail vein injections of transposon vectors to overexpress AKT/NRas, or c-Myc, with or without wild-type (WT) or mutant-activated (-4A) MAF1, or short-hairpin MAF1 (shMAF1).

View Article and Find Full Text PDF

Encapsulation of paclitaxel into date palm lipid droplets for enhanced brain cancer therapy.

Sci Rep

December 2024

Department of Molecular Biology and Biotechnology, Atomic Energy Commission of Syria (AECS), P.O. Box 6091, Damascus, Syria.

Paclitaxel, a powerful anticancer drug, is limited by its poor water solubility and systemic toxicity, which hinder its effectiveness against aggressive brain tumors. This study aims to overcome these challenges by exploring novel intranasal delivery methods using lipid droplets (LDs) derived from date palm seeds (DPLDs) and mouse liver (MLLDs). The anticancer efficacy of PTX was evaluated using a comparative intranasal delivery approach.

View Article and Find Full Text PDF

Metabolic dysfunction-associated steatohepatitis (MASH) is a form of chronic liver inflammation associated with metabolic syndrome, such as obesity and a major cause of hepatocellular carcinoma (HCC). Multi-biotics, a soymilk fermented with lactic acid bacteria, are known to alleviate obesity by lowering lipid profile. This study aimed to establish and characterize mouse organoids derived from MASH-related HCC models to evaluate drug responses, particularly focusing on Lenvatinib resistance.

View Article and Find Full Text PDF

VEGF-C propagates 'onward' colorectal cancer metastasis from liver to lung.

Br J Cancer

January 2025

Laboratory for Translational Oncology and Department of Surgical Oncology, Division of Imaging and Cancer, University Medical Center Utrecht and Utrecht University, Heidelberglaan 100, 3584CX, Utrecht, The Netherlands.

Article Synopsis
  • The study investigates how liver metastases contribute to the spread of colon cancer to the lungs, focusing on the role of VEGF-C.
  • Researchers created organoids that overexpress VEGF-C and reimplanted them into mice, finding that this led to increased lymphatic vessel growth and lung metastasis.
  • The findings suggest that targeting the VEGF-C and NOTCH pathways could potentially hinder the progression of colorectal cancer by limiting metastasis.
View Article and Find Full Text PDF

The introduction of combination therapy utilizing tyrosine kinase inhibitors (TKIs) and immune checkpoint inhibitors for advanced hepatocellular carcinoma (HCC) has significantly altered the management of affected patients. However, the absence of predictive biomarkers to identify those who would derive the greatest benefit from this combination therapy underscores the necessity for further enhancements in its efficacy. In this study, we performed a proteomic analysis on surgical specimens from patients who either responded to or did not respond to combination therapy with sorafenib and programmed death-1 (PD-1) monoclonal antibody (mAb).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!