Download full-text PDF

Source
http://dx.doi.org/10.1007/BF01926478DOI Listing

Publication Analysis

Top Keywords

renin-angiotensin system
4
system urinephrectomized
4
urinephrectomized adrenalectomized
4
adrenalectomized rats
4
renin-angiotensin
1
urinephrectomized
1
adrenalectomized
1
rats
1

Similar Publications

Introduction/objective: Emotional, mental, or psychological distress, defined as increased symptoms of depression, anxiety, and/or stress, is common in patients with chronic diseases, such as cardiovascular (CV) disease (CVD).

Methods: Literature was reviewed regarding data from studies and meta-analyses examining the impact of emotional stress on the occurrence and outcome of several CVDs (coronary disease, heart failure, hypertension, arrhythmias, stroke). These influences' pathophysiology and clinical spectrum are detailed, tabulated, and pictorially illustrated.

View Article and Find Full Text PDF

Diabetic kidney disease is a leading cause of kidney failure worldwide and is easily detectable with screening examination. Diabetes causes hyperfiltration and activation of the renin-angiotensin aldosterone system by hemodynamic changes within the nephron, which perpetuates damaging physiology. Diagnosis is often clinical after detection of heavy proteinuria in a patient with diabetes,but can be confirmed by observation of histologic stages on kidney biopsy.

View Article and Find Full Text PDF

The renin-angiotensin-aldosterone system (RAAS) is a complex regulator comprising hormones, proteins, and enzymes. The discovery of the RAAS and its pharmacological manipulation has been essential in the management of cardiovascular diseases, including hypertension. Beyond the benefits of hypertension, RAAS inhibition has implications for heart failure, atherosclerotic disease, and kidney disease.

View Article and Find Full Text PDF

Mathematical modeling of impacts of patient differences on renin-angiotensin system and applications to COVID-19 lung fibrosis outcomes.

Comput Biol Med

January 2025

Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY, 14260, USA; Department of Biomedical Engineering, University at Buffalo, The State University of New York, Buffalo, NY, 14260, USA; Institute for Artificial Intelligence and Data Science, University at Buffalo, The State University of New York, Buffalo, NY, 14260, USA; Witebsky Center for Microbial Pathogenesis and Immunology, University at Buffalo, The State University of New York, Buffalo, NY, 14203, USA; Department of Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, NY, 14215, USA. Electronic address:

Patient-specific premorbidity, age, and sex are significant heterogeneous factors that influence the severe manifestation of lung diseases, including COVID-19 fibrosis. The renin-angiotensin system (RAS) plays a prominent role in regulating the effects of these factors. Recent evidence shows patient-specific alterations of RAS peptide homeostasis concentrations with premorbidity and the expression level of angiotensin-converting enzyme 2 (ACE2) during COVID-19.

View Article and Find Full Text PDF

Renal Tubule-Specific Angiotensinogen Deletion Attenuates SGLT2 Expression and Ameliorates Diabetic Kidney Disease in Murine Models of Type 1 Diabetes.

Diabetes

January 2025

Centre de recherche, Centre hospitalier de l'Université de Montréal (CRCHUM) and Département de médecine, Université de Montréal, 900 Saint Denis Street, Montréal, QC Canada H2X 0A9.

The role of the intrarenal renin-angiotensin system (iRAS) in diabetic kidney disease (DKD) progression remains unclear. In this study, we generated mice with renal tubule-specific deletion of angiotensinogen (Agt; RT-Agt-/-) in both Akita and streptozotocin (STZ)-induced mouse model of diabetes. Both Akita RT-Agt-/- and STZ-RT-Agt-/- mice exhibited significant attenuation of glomerular hyperfiltration, urinary albumin/creatinine ratio, glomerulomegaly and tubular injury.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!