AI Article Synopsis

Article Abstract

The XC rat cell line was found to support the replication of a strain of the Moloney murine sarcoma-leukemia virus. In growth curve experiments cytopathology was paralleled by the production of murine sarcoma virus and leukemia virus progeny having the biologic, antigenic, and biophysical properties of the infecting virus.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC355071PMC
http://dx.doi.org/10.1128/JVI.11.1.146-149.1973DOI Listing

Publication Analysis

Top Keywords

moloney murine
8
murine sarcoma-leukemia
8
sarcoma-leukemia virus
8
virus
5
replication moloney
4
virus cells
4
cells rat
4
rat cell
4
cell support
4
support replication
4

Similar Publications

Background: B-cell specific Moloney MLV insertion site-1 (Bmi-1) belongs to the polycomb group (PcG) gene and is a transcriptional suppressor to maintain appropriate gene expression patterns during development. To investigate whether the Bmi-1 gene has a corrective effect on bone senescence induced in Bmi-1 mice through regulating the bone microenvironment.

Methods: Littermate heterozygous male and female mice (Bmi-1) were used in this study.

View Article and Find Full Text PDF

Background: Glioblastoma (GBM) is the most common primary brain tumor in adults and has a median survival of less than 15 months. Advancements in the field of epigenetics have expanded our understanding of cancer biology and helped explain the molecular heterogeneity of these tumors. B-cell-specific Moloney murine leukemia virus insertion site-1 (Bmi-1) is a member of the highly conserved polycomb group (PcG) protein family that acts as a transcriptional repressor of multiple genes, including those that determine cell proliferation and differentiation.

View Article and Find Full Text PDF
Article Synopsis
  • About 20% of familial ALS cases are linked to mutations in the SOD1 gene, and traumatic brain injury (TBI) is identified as a possible risk factor.
  • Researchers studied the effects of repetitive TBI on ALS progression in SOD1 mouse models and the role of Sarm1, a regulator of axonal degeneration.
  • Results showed that TBI worsened ALS symptoms and disease progression, but losing Sarm1 helped improve outcomes and reduced nerve damage, indicating potential for SARM1-targeted treatments.
View Article and Find Full Text PDF

[MMLV reverse transcriptase, a relevant tool for molecular biology].

Virologie (Montrouge)

December 2024

Unité des Virus émergents (UVE : Aix-Marseille Univ, Università di Corsica, Corte, IRD 190, Inserm 1207, IRBA), France.

The reverse transcriptase of Moloney Murine Leukemia Virus (MMLV) is an enzyme that synthesizes DNA from an RNA template. Among reverse transcriptases, this enzyme is currently the most commonly used in molecular biology and diagnostics. Since its discovery, this viral protein has been extensively studied, shedding light on its structural and functional characteristics, and offering opportunities to optimize the catalytic performances for biotechnological applications.

View Article and Find Full Text PDF

Pro-viral Insertion site for the Moloney Murine Leukemia virus 1 (PIM-1) is widely involved in various biological processes and diseases, which is based on its structure and functional sites. However, the relationship between active sites and function of PIM-1 kinase remains unclear due to the lack of effective study approaches in live cells. Herein, to visualize the effect of different active sites in PIM-1 protein on its function activity and relation with PI3K/Akt/mTOR pathway, three mutant probes of EPHY which was developed previously based on fluorescence resonance energy transfer (FRET) technology to detect PIM-1 kinase activity in living cells were further constructed and transfected into cells followed by treating with PIM-1 inhibitors, ATP and PI3K inhibitor, respectively.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!