Download full-text PDF

Source
http://dx.doi.org/10.2337/diab.21.9.946DOI Listing

Publication Analysis

Top Keywords

role lipolytic
4
lipolytic glucocorticoid
4
glucocorticoid hormones
4
hormones development
4
development diabetic
4
diabetic ketosis
4
role
1
glucocorticoid
1
hormones
1
development
1

Similar Publications

Integrative Transcriptomics and Proteomics Analysis Reveals 's Role in Lipid Metabolism.

Genes (Basel)

November 2024

Laboratory of Genetic Breeding, Reproduction and Precision Livestock Farming, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan 430023, China.

Abnormalities in lipid metabolism and endoplasmic reticulum (ER) stress are strongly associated with the development of a multitude of pathological conditions, including nonalcoholic fatty liver disease (NAFLD), diabetes mellitus, and obesity. Previous studies have indicated a potential connection between thyroid hormone responsive ( and lipid metabolism and that ER stress may participate in the synthesis of key regulators of adipogenesis. However, the specific mechanisms remain to be investigated.

View Article and Find Full Text PDF

Nesfatin-1 is a crucial regulator of energy homeostasis in mammals and fishes, however, its metabolic role remains completely unexplored in amphibians, reptiles, and birds. Therefore, present study elucidates role of nesfatin-1 in glucose homeostasis in wall lizard wherein fasting stimulated hepatic nucb2/nesfatin-1, glycogen phosphorylase (glyp), phosphoenolpyruvate carboxykinase (pepck), and fructose 1,6-bisphosphatase (fbp), while feeding upregulated pancreatic nucb2/nesfatin-1 and insulin, suggesting towards tissue-specific dual role of nesfatin-1 in glucoregulation. The glycogenolytic/gluconeogenic role of nesfatin-1 was further confirmed by an increase in media glucose levels along with heightened hepatic pepck and fbp expression and concomitant decline in liver glycogen content in nesfatin-1-treated liver of wall lizard.

View Article and Find Full Text PDF

Genes involved in lipid metabolism have been considered potential therapeutic targets in lung cancer because lipid metabolism is severely disrupted in this cancer. Monoglyceride lipase (MGLL) is a lipolytic enzyme that converts monoacylglycerides to fatty acids and glycerol. MicroRNAs (miRNA), one of the most important epigenetic regulators of gene expression, are also considered potential biomarkers in diagnosing, treating, and prognosis lung cancer.

View Article and Find Full Text PDF

GDF15-GFRAL signaling drives weight loss and lipid metabolism in mouse model of amyotrophic lateral sclerosis.

Brain Behav Immun

February 2025

Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy; IRCCS Neuromed, Pozzilli, Italy. Electronic address:

Weight loss is a common early sign in amyotrophic lateral sclerosis (ALS) patients and negatively correlates with survival. In different cancers and metabolic disorders, high levels of serum growth differentiation factor 15 (GDF15) contribute to a decrease of food intake and body weight, acting through GDNF family receptor alpha-like (GFRAL). Here we report that GDF15 is highly expressed in the peripheral blood of ALS patients and in the hSOD1 mouse model and that GFRAL is upregulated in the brainstem of hSOD1 mice.

View Article and Find Full Text PDF

The repression of the lipolytic inhibitor G0s2 enhancers affects lipid metabolism.

Gene

February 2025

State Key Laboratory of Swine and Poultry Breeding Industry, Sichuan Agricultural University, Chengdu 611130, China; College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Chongqing Academy of Animal Sciences, Chongqing 402460, China; National Center of Technology Innovation for Pigs, Chongqing 402460, China. Electronic address:

Article Synopsis
  • G0s2 is an inhibitor of adipose triglyceride lipase (ATGL), influencing triglyceride mobilization in fat and liver cells, and is linked to metabolic disorders like obesity and NAFLD.
  • Researchers discovered three active enhancers of the G0s2 gene in adipocytes, which play a crucial role in its expression and lipid droplet formation.
  • Further analyses showed that specific transcription factors, particularly PPARG and RXRA, regulate one of these enhancers (G0S2-En5), impacting pathways related to lipid metabolism.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!