1,25-Dihydroxycholecalciferol (DHCC), isolated from kidney homogenates incubated with 25-hydroxycholecalciferol (HCC), stimulated the release of previously incorporated (45)45Ca from fetal rat bones in organ culture, at concentrations of 10(-10) to 10(-8)M. The dose response curves for 1,25-DHCC and 25-HCC, the parent compound, are parallel, but 1,25-DHCC is about 100 times as potent on a weight basis. Brief exposure to maximum doses of either agent leads to prolonged bone resorption.

Download full-text PDF

Source
http://dx.doi.org/10.1126/science.175.4023.768DOI Listing

Publication Analysis

Top Keywords

bone resorption
8
125-dihydroxycholecalciferol potent
4
potent stimulator
4
stimulator bone
4
resorption tissue
4
tissue culture
4
culture 125-dihydroxycholecalciferol
4
125-dihydroxycholecalciferol dhcc
4
dhcc isolated
4
isolated kidney
4

Similar Publications

FSH exacerbates bone loss by promoting osteoclast energy metabolism through the CREB-MDH2-NAD axis.

Metabolism

January 2025

State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, PR China. Electronic address:

Aims: Osteoclast energy metabolism is a promising target for treating diseases characterized by high osteoclast activity, such as osteoporosis. However, the regulatory factors involved in osteoclast bioenergetic processes are still in the early stages of being fully understood. This study reveals the effects of follicle-stimulating hormone (FSH) on osteoclast energy metabolism.

View Article and Find Full Text PDF

Titanium dioxide nanotube arrays (TNTs) generated in situ on the surface of dental implants have been shown to enhance bone integration for load-bearing support while managing load distribution and energy dissipation to prevent bone resorption from overload. However, their inadequate stability limits the clinical use of conventional TNTs. This study introduces an innovative approach to improve the mechanical stability of TNTs while maintaining their bone-integration efficiency.

View Article and Find Full Text PDF

Rectifying the Crosstalk between the Skeletal and Immune Systems Improves Osteoporosis Treatment by Core-Shell Nanocapsules.

ACS Nano

January 2025

Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.

Contemporary osteoporosis treatment often neglects the intricate interactions among immune cells, signaling proteins, and cytokines within the osteoporotic microenvironment. Here, we developed core-shell nanocapsules composed of a cationized lactoferrin core and an alendronate polymer shell. By tuning the size of these nanocapsules and leveraging the alendronate shell, we enabled precise delivery of small interfering RNA targeting the Semaphorin 4D gene (siSema4D) to specific bone sites.

View Article and Find Full Text PDF

Zebrafish scales offer a variety of advantages for use in standard laboratories for teaching and research purposes. Scales are easily collected without the need for euthanasia, regenerate within a couple of weeks, and are translucent and small, allowing them to be viewed using a standard microscope. Zebrafish scales are especially useful in educational environments, as they provide a unique opportunity for students to engage in hands-on learning experiences, particularly in understanding cellular dynamics and in vitro culturing methods.

View Article and Find Full Text PDF

The reduction in alveolar ridge height and width after tooth extraction poses a substantial challenge for dental implant restoration. This study aimed to observe the roles of S100A8 in the inflammatory response and bone resorption following tooth extraction. Rat mandibular second molars were extracted.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!