Evidence has accumulated in recent years for the central role of proteins and enzymes in the function of cell membranes. In the chemical theory proposed for the generation of bioelectricity, i.e., for the control of the ion permeability changes of excitable membranes, the protein assembly associated with the action of acetylcholine plays an essential role. Support of the theory by recent protein studies in which the excitable membranes of the highly specialized electric tissue were used will be discussed. A scheme is presented indicating the possible sequence of chemical reactions that change ion permeability after excitation. A sequence of chemical events within the excitable membranes of the synaptic junctions, i.e., within the pre- and postsynaptic membranes, similar to that proposed for the conducting membranes, is presented in a second scheme as an alternative to the hypothesis of the role of acetylcholine as a transmitter between two cells.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC389615 | PMC |
http://dx.doi.org/10.1073/pnas.68.12.3170 | DOI Listing |
Clin Neurophysiol
January 2025
Department of Clinical Neurophysiology, Rigshospitalet, Copenhagen, Denmark; Department of Clinical Medicine and Neuroscience, University of Copenhagen, Denmark; Department of Neurology, Rigshospitalet, Copenhagen, Denmark.
Objective: To investigate motor axonal excitability in multifocal motor neuropathy (MMN) associated with involuntary muscle activity.
Methods: Two MMN patients with continuous involuntary finger movements (MMNifm) were compared to 11 patients without movements (MMNnfm). Clinical examination, EMG of the abductor pollicis brevis muscle, nerve conduction studies, motor unit number estimation, excitability studies, and mathematical modeling were conducted in the patients with MMN and compared to controls.
Biomater Adv
January 2025
Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, School of Basic Medical Sciences and Life Sciences, Hainan Medical University, Haikou 571199, China. Electronic address:
Bacterial infections present a significant threat to human health, a challenge that is intensified by the slow pace of novel antibiotic development and the swift emergence of bacterial resistance. The development of novel antibacterial agents is crucial. Indocyanine green (ICG), a widely used imaging dye, efficiently generates reactive oxygen species (ROS) and heat for treating bacterial infections but suffers from aggregation and instability, limiting its efficacy.
View Article and Find Full Text PDFCells
January 2025
IDDRC, Jane and Terry Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA.
Abnormalities in the mammalian target of the rapamycin (mTOR) pathway have been implicated in numerous developmental brain disorders. While the molecular and histological abnormalities have been described, less is known about alterations in membrane and synaptic excitability with chronic changes in the mTOR pathway. In the present study, we used a conditional mouse model with a deletion of the phosphatase and tensin homologue (Pten, a negative regulator of mTOR) from cortical pyramidal neurons (CPNs).
View Article and Find Full Text PDFBiophys J
January 2025
Department of Physics and Astronomy, University College London, London WC1E 6BT, United Kingdom. Electronic address:
Photosynthetic organisms rely on a network of light-harvesting protein-pigment complexes to efficiently absorb sunlight and transfer excitation energy to reaction centre proteins where charge separation occurs. In photosynthetic purple bacteria, these complexes are embedded within the cell membrane, with lipid composition affecting complex clustering, thereby impacting inter-complex energy transfer. However, the impact of the lipid bilayer on intra-complex excitation dynamics is less understood.
View Article and Find Full Text PDFJ Comput Neurosci
January 2025
Paris-Saclay University, Centre National de la Recherche Scientifique (CNRS), Institute of Neuroscience (NeuroPSI), 91198, Gif sur Yvette, France.
To model the dynamics of neuron membrane excitability many models can be considered, from the most biophysically detailed to the highest level of phenomenological description. Recent works at the single neuron level have shown the importance of taking into account the evolution of slow variables such as ionic concentration. A reduction of such a model to models of the integrate-and-fire family is interesting to then go to large network models.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!