Download full-text PDF

Source
http://dx.doi.org/10.1093/annhyg/14.2.65DOI Listing

Publication Analysis

Top Keywords

determination quartz
4
quartz personal
4
personal sampler
4
sampler filters
4
filters x-ray
4
x-ray diffraction
4
determination
1
personal
1
sampler
1
filters
1

Similar Publications

Quantification of modal mineralogy in molybdenite-bearing drill-core samples by laser-induced breakdown spectroscopy.

Heliyon

January 2025

Laboratorio de Trazas elementales y Especiación, Departamento de Química Analítica e Inorgánica, Facultad de Ciencias Químicas, Universidad de Concepción, Concepción, Chile.

Quantification of modal mineralogy in drill-core samples is crucial for understanding the geology and metal deportment in a mining operation. This study assesses conventional procedures to quantify modal mineralogy, that includes an initial drill-core logging, followed by petrographic descriptions and SEM-based automated mineralogy analyses performed in selected regions of interest, against a novel approach using laser-induced breakdown spectroscopy (LIBS). Our proposed methodology aims to quantify the modal mineralogy directly in a drill-core sample, avoiding previous stages of selection and preparation of samples.

View Article and Find Full Text PDF

A compact and portable gas sensor based on quartz-enhanced photoacoustic spectroscopy (QEPAS) for the detection of methane (C1), ethane (C2), and propane (C3) in natural gas (NG)-like mixtures is reported. An interband cascade laser (ICL) emitting at 3367 nm is employed to target absorption features of the three alkanes, and partial least-squares regression analysis is employed to filter out spectral interferences and matrix effects characterizing the examined gas mixtures. Spectra of methane, ethane, and propane mixtures diluted in nitrogen are employed to train and test the regression algorithm, achieving a prediction accuracy of ∼98%, ∼96%, and ∼93% on C1, C2, and C3, respectively.

View Article and Find Full Text PDF

Separation Time of Aluminothermic Reduction Products for Sustainable Silicon Production.

Open Res Eur

January 2025

Universidad Politecnica de Madrid Departamento de Ingenieria Geologica y Minera, Madrid, Community of Madrid, 28003, Spain.

Background: This work was carried out within the framework of the SisAl Pilot project, which is devoted to the environmentally friendly production of silicon. This new method relies on the aluminothermic reduction of quartz in slag, offering a more sustainable alternative to the traditional reduction of silica with carbon in submerged arc furnaces.

Methods: The process takes place in a rotary kiln producing silicon (Si) and alumina slag (actually, a CaO - Al O slag), which must be separated at the end to extract the silicon.

View Article and Find Full Text PDF

In this study, we used desert soil from Gansu, China, as a sample to propose a method for designing hyperspectral stealth coatings against desert soil backgrounds within the spectral range of 400-2500 nm, and the corresponding coating was prepared. Firstly, the correlation between the composition and typical spectral detected characteristics of the desert soil was systematically analyzed. It was found that the color and the spectrum of the desert soil in the range of 400-1000 nm were influenced by different types of iron oxides.

View Article and Find Full Text PDF

In the integrated circuit manufacturing process, reverse osmosis (RO) membranes are widely used for wastewater reclamation. However, fouling by typical surfactants significantly reduces membrane efficiency and lifespan. This study investigates the fouling mechanisms of typical surfactants-cetyl trimethyl ammonium bromide (CTAB, cationic), sodium dodecyl sulfate (SDS, anionic), and polyoxyethylene octyl phenyl ether (TX, nonionic)-on RO membranes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!