Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1139/m71-094 | DOI Listing |
J Hazard Mater
January 2025
College of Veterinary medicine, Qingdao Agricultural University, Qingdao 266100, China. Electronic address:
Front Microbiol
January 2025
Laboratory of Food Microbiology and Mycotoxicology, Department of Food Engineering, School of Animal Science and Food Engineering, University of São Paulo, Pirassununga, Brazil.
Introduction: Microbial contamination remains a vital challenge across the food production chain, particularly due to mycotoxins-secondary metabolites produced by several genera of fungi such as , and . These toxins, including aflatoxins, fumonisins, ochratoxins, and trichothecenes (nivalenol, deoxynivalenol, T2, HT-2). These contaminants pose severe risks to human and animal health, with their potential to produce a variety of different toxic effects.
View Article and Find Full Text PDFFront Cell Infect Microbiol
January 2025
United States National Poultry Research Center, United States Department of Agriculture Toxicology and Mycotoxin Research Unit, Athens, GA, United States.
The mycotoxigenic fungi, and , commonly co-colonize maize in the field, yet their direct interactions at the chemical communication level have not been well characterized. Here, we examined if and how the two most infamous mycotoxins produced by these species, aflatoxin and fumonisin, respectively, govern interspecies growth and mycotoxin production. We showed that fumonisin producing strains of suppressed the growth of while non-producers did not.
View Article and Find Full Text PDFShokuhin Eiseigaku Zasshi
January 2025
Department of Nutritional Science, Faculty of Applied Bioscience, Tokyo University of Agriculture.
Some microorganisms, including lactic acid bacteria (LAB), can bind to mycotoxins. Its binding ability is useful for mycotoxin mitigation. Conventionally, the binding assay for this ability of microorganisms to mycotoxins has been performed by the so-called in vitro assay.
View Article and Find Full Text PDFBMC Biotechnol
January 2025
Department of Botany and Microbiology, Faculty of Science, Zagazig University, Zagazig, Sharkia, 44519, Egypt.
Background: This study employed melanin synthesized by Aspergillus flavus and Aspergillus carbonarius to inhibit the production of mycotoxins and bioremediation of heavy metals (HMs).
Methods: First, twenty fungal isolates were obtained from soil samples, and were evaluated to produce melanin. The melanin of the most potent producers has undergone several confirmatory experiments, including, Dihydroxyphenylalanine (DOPA)-inhibitor-kojic acid pathway detection, High-performance liquid chromatography (HPLC), Fourier-transform infrared (FTIR) and Nuclear magnetic resonance (NMR).
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!