Download full-text PDF

Source

Publication Analysis

Top Keywords

role nicotinamide
4
nicotinamide adenine
4
adenine dinucleotide
4
dinucleotide glycohydrolase
4
glycohydrolase control
4
control glyceraldehyde-3-phosphate
4
glyceraldehyde-3-phosphate dehydrogenase
4
dehydrogenase activity
4
role
1
adenine
1

Similar Publications

Depression and coronary heart disease (CHD) are two interconnected diseases that profoundly impact global health. Depression is both a complex psychiatric disorder and an established risk factor for CHD. Sirtuin 1 (SIRT1) is an enzyme that requires the cofactor nicotinamide adenine dinucleotide (NAD) to perform its deacetylation function, and its involvement is crucial in reducing cardiovascular risks that are associated with depression.

View Article and Find Full Text PDF

We have recently demonstrated a novel anaerobic NADH-dependent haem breakdown reaction, which is carried out by a range of haemoproteins. The Yersinia enterocolitica protein, HemS, is the focus of further research presented in the current paper. Using conventional experimental methods, bioinformatics, and energy landscape theory (ELT), we provide new insight into the mechanism of the novel breakdown process.

View Article and Find Full Text PDF

Decrease of NAD Inhibits the Apoptosis of OLP T Cells via Inducing Mitochondrial Fission.

J Inflamm Res

January 2025

State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, People's Republic of China.

Purpose: Oral lichen planus (OLP) is a chronic, immune-mediated inflammatory disease involving T cells. Mitochondrial fission plays a crucial role in T cell fate through structural remodeling. Nicotinamide adenine dinucleotide (NAD) regulates mitochondrial remodeling and function.

View Article and Find Full Text PDF

Hepatic lipotoxicity, resulting from excessive lipid accumulation in hepatocytes, plays a central role in the pathogenesis of various metabolic liver diseases. Despite recent progress, the precise mechanisms remain incompletely understood. Employing excessive exposure to palmitate in hepatocytes as our primary experimental model and mice studies, we aimed to uncover the mechanisms behind hepatic lipotoxicity, thereby developing potential treatments.

View Article and Find Full Text PDF

Evaluation of the Role of PnuC Gene in Enhancing Nicotinamide Mononucleotide Synthesis.

Biotechnol Appl Biochem

January 2025

Department of Chemical Engineering, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea.

The PnuC gene plays a crucial role in the complex processes related to the absorption and synthesis of the nicotinamide mononucleotide (NMN) precursor. NMN, a nicotinamide adenine dinucleotide (NAD) precursor, is important for cellular energy metabolism, DNA repair, and antiaging. This study focuses on elucidating the precursor absorption mechanism and the specific function of the PnuC gene in encoding membrane transport proteins, as well as its impact on the regulation and dynamics of NMN within the cell.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!