Download full-text PDF |
Source |
---|
Adv Biotechnol (Singap)
January 2025
Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore.
Enzymes are the cornerstone of biocatalysis, biosynthesis and synthetic biology. However, their applicability is often limited by low substrate selectivity. A prime example is the bifunctional linalool/nerolidol synthase (LNS) that can use both geranyl diphosphate (GPP) and farnesyl diphosphate (FPP) to produce linalool and nerolidol, respectively.
View Article and Find Full Text PDFNucleic Acids Res
January 2025
Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA.
RNA endonucleases are the rate-limiting initiator of decay for many bacterial mRNAs. However, the positions of cleavage and their sequence determinants remain elusive even for the well-studied Bacillus subtilis. Here we present two complementary approaches-transcriptome-wide mapping of endoribonucleolytic activity and deep mutational scanning of RNA cleavage sites-that reveal distinct rules governing the specificity among B.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Department of Microbiology, University of Delhi South Campus, New Delhi 110021, India. Electronic address:
The SUMO fusion technology has immensely contributed to the soluble production of therapeutics and other recombinant proteins in E. coli. The structure-based functionality of SUMO protease has remained the primary determinant for choosing SUMO as a solubility enhancer tag.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
February 2025
Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada.
ClpXP is a two-component mitochondrial matrix protease. The caseinolytic mitochondrial matrix peptidase chaperone subunit X (ClpX) recognizes and translocates protein substrates into the degradation chamber of the caseinolytic protease P (ClpP) for proteolysis. ClpXP degrades damaged respiratory chain proteins and is necessary for cancer cell survival.
View Article and Find Full Text PDFBiochem J
January 2025
The Sun Yat-Sen University, Guangzhou, China.
The N6-methyladenine (6mA) modification is an essential epigenetic marker and plays a crucial role in processes, such as DNA repair, replication, gene expression regulation, etc. YerA from Bacillus subtilis is considered a novel class of enzymes capable of catalyzing the deamination of 6mA to produce hypoxanthine. Despite the significance of this type of enzymes in bacterial self-defense systems and potential applications as a gene-editing tool, the substrate specificity, the catalytic mechanism and the physiological function of YerA are currently unclear due to the lack of structural information.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!