The latency of Micrococcus lysodeikticus membrane-bound Mg(2+)-adenosine triphosphatase (ATPase) is expressed by the ratio of its activity assayed in the presence of trypsin ("total") versus the activity assayed in absence of the protease ("basal"). By isolating membranes in the presence of variable concentrations of Mg(2+) (50 mM, 10 mM, or none) and by washing them with different Mg(2+)- and ethylenediaminetetraacetic acid-containing tris(hydroxymethyl)aminomethane-hydrochloride buffers (pH 7.5), we showed that the enzyme latency was dependent on the environmental concentration of this divalent metal ion. Mg(2+) bound to at least two classes of sites. The binding of Mg(2+) to low-affinity sites (saturation at approximately 40 mM external Mg(2+)) induced a high basal ATPase activity, whereas its binding to medium-affinity sites (saturation at about 2 mM Mg(2+)) correlated with low basal activity and a very high stimulation by trypsin. Membranes with tightly bound Mg(2+) (high affinity?) revealed an intermediate behavior for the latency of M. lysodeikticus ATPase. The Mg(2+)/Ca(2+) antagonism as activators of the membrane ATPase was not directly related to Mg(2+) binding by the membranes. The efficiency of the ATPase release from M. lysodeikticus membrane by 3 mM tris(hydroxymethyl)aminomethane-hydrochloride buffer (pH 7.5) was inversely proportional to the concentration of external and/or bound Mg(2+). Deoxycholate (DOC) (1%) solubilized the ATPase from all types of membrane. All the soluble ATPases behaved as Ca(2+)-ATPases, but the DOC-soluble fractions showed degrees of latency like those of the original membranes. The DOC-soluble ATPase preparation revealed a vesicular structure and complex protein patterns by sodium dodecyl sulfate gel electrophoresis. We propose that ATPase latency is modulated via a Mg(2+)-ATPase-membrane complex.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC245646 | PMC |
http://dx.doi.org/10.1128/jb.119.2.593-601.1974 | DOI Listing |
Toxins (Basel)
January 2025
School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
microorganisms play an important role in the zearalenone (ZEA) biotransformation process in natural environments. The phosphotransferase pathway in is both widespread and relatively well conserved. However, the reaction kinetics of these phosphotransferases remain poorly understood, and their catalytic activities are suboptimal.
View Article and Find Full Text PDFJ Funct Biomater
January 2025
Department of Pharmaceutical Science, University of Perugia, 06123 Perugia, Italy.
Magnesium alloys are promising biomaterials to be used as temporary implants due to their biocompatibility and biodegradability. The main limitation in the use of these alloys is their rapid biodegradation. Moreover, the risk of microbial infections, often following the implant surgery and hard to eradicate, is another challenge.
View Article and Find Full Text PDFMembranes (Basel)
January 2025
Department of Green Chemical Engineering, College of Engineering, Sangmyung University, Cheonan 31066, Republic of Korea.
Membrane capacitive deionization (MCDI) is an electrochemical ion separation process that combines ion-exchange membranes (IEMs) with porous carbon electrodes to enhance desalination efficiency and address the limitations of conventional capacitive deionization (CDI). In this study, a cation-exchange membrane (CEM) embedded with a metal-organic framework (MOF) was developed to effectively separate monovalent and multivalent cations in influent solutions via MCDI. To fabricate CEMs with high monovalent ion selectivity, ZIF-8 was incorporated into sulfonated poly(2,6-dimethyl-1,4-phenylene oxide) (SPPO) at various weight ratios.
View Article and Find Full Text PDFInorg Chem
January 2025
CNRS, University of Bordeaux, Bordeaux INP, ICMCB UMR CNRS 5026, F-33600 Pessac ,France.
The diaspore-type crystalline structure is historically well-known in mineralogy, but it has also been widely studied for various applications in the field of catalysis, electrocatalysis, and batteries. However, once two anions of similar ionic size but different electronegativity, such as F and O or more precisely OH, are combined, the knowledge of the location of these two anions is of paramount importance to understand the chemical properties in relation with the generation of hydrogen bonds. Coprecipitation and hydrothermal routes were used to prepare hydroxide-fluorides that crystallize all in an orthorhombic structure with four formula units per cell.
View Article and Find Full Text PDFEnviron Toxicol Chem
January 2025
ARCHE Consulting, Ghent, Belgium.
This study aimed to develop a bioavailability-based effects assessment method for nickel (Ni) to derive acute freshwater environmental thresholds in Europe. The authors established a reliable acute freshwater Ni ecotoxicity database covering 63 different freshwater species, and the existing acute Ni bioavailability models for invertebrates were revised. A single average invertebrate bioavailability model was proposed, in which the protective effects of Ca2+ and Mg2+ on Ni2+ toxicity were integrated as a single-site competition effect at the Ni biotic ligand.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!