A prospective study to assess the clinical usefulness of computer processing of liver scans has been carried out on 203 patients. All patients have had six months follow up to confirm the diagnostic accuracy of the scan results. Four presentations have been studied using ROC analysis: (i) original gamma-camera pictures; (ii) processed images obtained using a non-stationary filter; (iii) images processed using nine-point smoothing; (iv) images obtained by linear interpolation at 25 isocount levels of display. It is concluded that pictures obtained by use of a non-stationary filter at 25 isocount levels are superior to a conventional gamma-camera pictures and displays obtained by linear interpolation only. All three are considerably superior to the images obtained by nine-point smoothing in detection of focal space-occupying lesions. Based on the results obtained, a strategy for the rational use of computer processing of gamma-camera liver scans is proposed.

Download full-text PDF

Source
http://dx.doi.org/10.1259/0007-1285-52-614-116DOI Listing

Publication Analysis

Top Keywords

computer processing
12
processing liver
8
liver scans
8
gamma-camera pictures
8
non-stationary filter
8
nine-point smoothing
8
linear interpolation
8
isocount levels
8
clinical evaluation
4
evaluation computer
4

Similar Publications

The role of striatal pathways in cognitive processing is unclear. We studied dorsomedial striatal cognitive processing during interval timing, an elementary cognitive task that requires mice to estimate intervals of several seconds and involves working memory for temporal rules as well as attention to the passage of time. We harnessed optogenetic tagging to record from striatal D2-dopamine receptor-expressing medium spiny neurons (D2-MSNs) in the indirect pathway and from D1-dopamine receptor-expressing MSNs (D1-MSNs) in the direct pathway.

View Article and Find Full Text PDF

Unlocking Platelet Mechanisms through Multi-Omics Integration: A Brief Review.

Curr Cardiol Rev

January 2025

Laboratory of Chemoinformatics, Infochemistry Scientific Center, ITMO University, Saint-Petersburg, Russian Federation.

Platelets, tiny cell fragments measuring 2-4 μm in diameter without a nucleus, play a crucial role in blood clotting and maintaining vascular integrity. Abnormalities in platelets, whether genetic or acquired, are linked to bleeding disorders, increased risk of blood clots, and cardiovascular diseases. Advanced proteomic techniques offer profound insights into the roles of platelets in hemostasis and their involvement in processes such as inflammation, metastasis, and thrombosis.

View Article and Find Full Text PDF

Hydrogen peroxide (HO) electrosynthesis via the 2e oxygen reduction reaction (ORR) is considered as a cost-effective and safe alternative to the energy-intensive anthraquinone process. However, in more practical environments, namely, the use of neutral media and air-fed cathode environments, slow ORR kinetics and insufficient oxygen supply pose significant challenges to efficient HO production at high current densities. In this work, mesoporous B-doped carbons with novel curved BC active sites, synthesized via a carbon dioxide (CO) reduction using a pore-former agent, to simultaneously achieve excellent 2e ORR activity and improved mass transfer properties are introduced.

View Article and Find Full Text PDF

Density functional theory has been employed to study indolo[3,2,1-]carbazole donor-based dyes, incorporating one and two units of 2,4-dimethoxybenzene auxiliary donors. Electrostatic potential analysis highlights the dye with one auxiliary donor (D2) as having the highest charge-donating capability. Structural analysis shows that auxiliary donors enhance planarity, reduce steric hindrance, and improve π-conjugation.

View Article and Find Full Text PDF

Target identification is crucial for drug screening and development because it can reveal the mechanism of drug action and ensure the reliability and accuracy of the results. Chemical biology, an interdisciplinary field combining chemistry and biology, can assist in this process by studying the interactions between active molecular compounds and proteins and their physiological effects. It can also help predict potential drug targets or candidates, develop new biomarker assays and diagnostic reagents, and evaluate the selectivity and range of active compounds to reduce the risk of off-target effects.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!