Download full-text PDF |
Source |
---|
Traditional numerical reconstruction methods in digital holography (DH) are faced with problems such as inaccurate and time-consuming unwrapping or the need to capture multiple holograms with different diffraction distances. In recent years, deep learning, believed to be a new and effective optimization tool, has been widely used in digital holography. However, most supervised deep learning methods require large-scale paired data, and their preparation is time-consuming and laborious.
View Article and Find Full Text PDFMetasurface holograms offer advantages, such as a wide viewing angle, compact size, and high resolution. However, projecting a full-color movie using a single hologram without polarization dependence has remained challenging. Here, we report a full-color dielectric metasurface holographic movie with a resolution of 512 × 512.
View Article and Find Full Text PDFOrbital angular momentum (OAM), with its unique orthogonality, is widely applied in optical holographic encryption and information storage. Theoretically, the topological charge of OAM holography is infinite. However, in practice, it is restricted by the Nyquist-Shannon sampling theorem and experimental equipment, resulting in a relatively small number of practically usable channels.
View Article and Find Full Text PDFThis paper presents a synthetic holographic stereogram printing approach that integrates neural radiance fields (NeRF) with the effective perspective images segmentation and mosaicking (EPISM) method. Sparse perspectives of a 3D scene are captured through random sampling and used to train a NeRF model with multi-resolution hash encoding, enabling rapid construction of an implicit scene representation. The EPISM method calculates the camera pose parameters needed for parallax images, which are rendered through the trained neural network.
View Article and Find Full Text PDFPolarization devices play a key role in many optical technologies and applications. However, traditional polarization devices are often large and lack integration, and achieving polarization conversion typically requires combining multiple devices, which makes it challenging to realize integrated optical systems. Following the current trend of optical devices, we propose a method using polarization holographic exposure to prepare polarization conversion devices.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!