The binding of H1 (and H5) to nucleosome core particles was demonstrated by separating mononucleosomes according to their DNA size on acrylamide gels containing high molarity urea. The presence of urea causes a redistribution of H1 so that it associates with some particles of all linker lengths, including no linker. When the urea is removed the H1 remains associated with particles of all DNA sizes if the different size classes are not mixed with each other. Therefore, urea can effect the transfer of H1 from particles with linker to particles with no linker. When nucleosomes of uniform DNA fragment length, some containing and some lacking H1, are re-electrophoresed under native conditions, they migrate as two widely separated bands. The mobilities of these variants do not depend on linker length and are identical to the mobilities of native H1-containing and H1-lacking particles. When the same collection of particles is electrophoresed in the presence of high molarity urea they migrate with a uniform mobility. These results suggest that H1-containing nucleosomes are conformationally different from H1-lacking particles, but that this difference is eliminated when histone-histone interactions are disrupted by urea.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC327716 | PMC |
http://dx.doi.org/10.1093/nar/6.2.609 | DOI Listing |
Int J Mol Sci
December 2024
Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198-6025, USA.
In eukaryotic nuclei, DNA is wrapped around an octamer of core histones to form nucleosomes. H1 binds to the linker DNA of nucleosome to form the chromatosome, the next structural unit of chromatin. Structural features on individual chromatosomes contribute to chromatin structure, but not fully characterized.
View Article and Find Full Text PDFMol Pharm
January 2025
Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China.
Developing low-toxicity, high-efficacy, and fast-acting strategies to manage acute liver injury (ALI) is critical due to its rapid progression and potential for severe outcomes. Curcumin (CUR) has shown promise in ALI therapy due to its ability to modulate the inflammatory microenvironment by scavenging reactive oxygen species (ROS). Nevertheless, CUR is highly hydrophobic limiting its bioavailability and effective in vivo transport, which hinders its further application.
View Article and Find Full Text PDFSmall
January 2025
Key Laboratory of New Energy and Rare Earth Resource Utilization of State Ethnic Affairs Commission, Key Laboratory of Photosensitive Materials & Devices of Liaoning Province, School of Physics and Materials Engineering, Dalian Minzu University, Dalian, 116600, China.
Owing to its high sensitivity, surface-enhanced Raman scattering (SERS) has immense potential for the identification of lung cancer from the variation in volatile biomarkers in the exhaled gas. However, two prevailing factors limit the application of SERS: 1) the adsorption of target molecules into SERS hotspots and 2) the detection specificity in multiple interference environments. To improve the density of the SERS hotspots, 3D Au@Ag-Au particles are prepared in a porous nanoframes (PPFs) based plasmonic structure, which facilitated a richer local electromagnetic field distribution among the Au nanocubic (NC) cores, Au-Ag porous nanoframes, and Au nanoparticles, thereby promoting the adsorption probability of gaseous aldehydes into the hotspots.
View Article and Find Full Text PDFJ Chem Phys
January 2025
Department of Physics and Astronomy and Center for Quantitative Biology, Rutgers University, Piscataway, New Jersey 08854, USA.
Nucleosomes are fundamental units of chromatin in which a length of genomic DNA is wrapped around a histone octamer spool in a left-handed superhelix. Large-scale nucleosome maps show a wide distribution of DNA wrapping lengths, which in some cases are tens of base pairs (bp) shorter than the 147 bp canonical wrapping length observed in nucleosome crystal structures. Here, we develop a thermodynamic model that assumes a constant free energy cost of unwrapping a nucleosomal bp.
View Article and Find Full Text PDFAnal Chem
January 2025
Department of Chemistry, Wuhan University, Wuhan 430072, China.
MicroRNAs (miRNAs) regulate a myriad of biological processes and thus have been regarded as useful biomarkers in biomedical research and clinical diagnosis. The specific and highly sensitive detection of miRNAs is of significant importance. Herein, a sensitive and rapid dual-amplification elemental labeling single-particle inductively coupled plasma-mass spectrometry (spICP-MS) analytical method based on strand displacement amplification (SDA) and CRISPR/Cas12a was developed for miRNA-21 detection.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!