In an attempt to establish which RNA polymerase catalyzes the synthesis of the low molecular weight RNA components A, C and D, Ama 1 cells (mutant Chinese hamster cells) were used in experiments with addition of alpha-amanitin. Ama 1 cells contain an altered RNA polymerase II which is 800 times more resistant towards inhibition by alpha-amanitin than the wild type enzyme. Alpha-amanitin (up to 200 microgram/ml) added to these cells does not affect the synthesis of the low molecular weight RNAs A, C and D. These data together with our previous data showing that alpha-amanitin (0.5 - 5.0 microgram/ml) preferentially inhibits the synthesis of A, C and D in normal cells indicate that RNA polymerase II catalyzes the synthesis of the low molecular weight RNA components A, C and D.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC327691 | PMC |
http://dx.doi.org/10.1093/nar/6.1.321 | DOI Listing |
JMIR Med Inform
January 2025
Department of Endocrinology and Metabolism, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China.
Background: Many tools have been developed to predict the risk of diabetes in a population without diabetes; however, these tools have shortcomings that include the omission of race, inclusion of variables that are not readily available to patients, and low sensitivity or specificity.
Objective: We aimed to develop and validate an easy, systematic index for predicting diabetes risk in the Asian population.
Methods: We collected the data from the NAGALA (NAfld [nonalcoholic fatty liver disease] in the Gifu Area, Longitudinal Analysis) database.
Bioelectron Med
January 2025
School of Pharmacy, Biodiscovery Institute & Boots Science Building, University of Nottingham, Nottingham, NG7 2RD, UK.
Background: In glioblastoma (GBM) therapy research, tumour treating fields by the company Novocure™, have shown promise for increasing patient overall survival. When used with the chemotherapeutic agent temozolomide, they extend median survival by five months. However, there is a space to design alternative systems that will be amenable for wider use in current research.
View Article and Find Full Text PDFMol Med
January 2025
Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.
Background: Lysinuric protein intolerance is a rare autosomal disorder caused by mutations in the Slc7a7 gene that lead to impaired transport of neutral and basic amino acids. The gold standard treatment for lysinuric protein intolerance involves a low-protein diet and citrulline supplementation. While this approach partially improves cationic amino acid plasma levels and alleviates some symptoms, long-term treatment is suggested to be detrimental and may lead to life-threatening complications characterized by a wide range of hematological and immunological abnormalities.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Agricultural Microbiology, Tamil Nadu Agricultural University, Coimbatore, 641003, Tamil Nadu, India.
Magnesium (Mg) an essential plant nutrient is widespread deficient in the acidic soils of Nilgiris of Tamil nadu, India. The vegetable yield and quality is especially affected due to deficiency of nutrients like Mg. This study investigates soil characteristics and bacterial diversity in the Nilgiris district of Tamil Nadu, India, with respect to Mg deficiency.
View Article and Find Full Text PDFAAPS PharmSciTech
January 2025
Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China.
Amorphous solid dispersion (ASD) is one of the most studied strategies for improving the dissolution performance of poorly water-soluble drugs, but ASDs often have low drug loadings, thereby necessitating larger dosage sizes. This study intended to create Soluplus® (SOL)-based microparticle ASDs with high drug loading (up to 60 w/w%) and long-term stability (at least 16 months) using electrospraying to enhance the dissolution of poorly water-soluble celecoxib (CEL). X-ray diffraction (XRD) and differential scanning calorimetry (DSC) analyses showed that the electrosprayed SOL-CEL microparticles were amorphous, and Fourier transform infrared spectroscopy (FTIR) data indicated the presence of hydrogen bonding between SOL and CEL in the microparticles, which helped stabilize the ASDs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!