Download full-text PDF |
Source |
---|
Epilepsy Res
January 2025
Department of Pediatric Neurology, Tokyo Metropolitan Children's Medical Center, Tokyo, Japan. Electronic address:
Background: Acute encephalopathy with biphasic seizures and late reduced diffusion (AESD) is clinically characterized by biphasic seizures associated with mild to severe neurological sequelae and is the most common subtype of acute encephalopathy in Japan, accounting for around 30 % of cases. The present study retrospectively analyzed the utility of electroencephalography (EEG) in determining the optimal method of diagnosing AESD at the early stage.
Methods: This study explores early power value differences to differentiate acute encephalopathy from prolonged febrile seizure (FS).
Front Psychiatry
January 2025
Feneryolu Medical Center, Üsküdar University, Istanbul, Türkiye.
Introduction: Major Depressive Disorder (MDD) leads to dysfunction and impairment in neurological structures and cognitive functions. Despite extensive research, the pathophysiological mechanisms and effects of MDD on the brain remain unclear. This study aims to assess the impact of MDD on brain activity using EEG power spectral analysis and asymmetry metrics.
View Article and Find Full Text PDFClin Neurophysiol
January 2025
Department of Neurology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China. Electronic address:
Objective: Sleep-related hypermotor epilepsy (SHE) is a relatively uncommon epilepsy syndrome, characterized by seizures closely related to the sleep cycle. This study aims to explore interictal electroencephalographic (EEG) characteristics in SHE.
Methods: We compared EEG data from 20 patients with SHE, 20 patients with focal epilepsy (FE), and 14 healthy controls, carefully matched for age, sex, education level, epilepsy duration, and drug-resistant epilepsy.
Br J Anaesth
January 2025
Department of Anaesthesiology, Peking University First Hospital, Beijing, China; Outcomes Research Consortium, Cleveland, OH, USA.
Background: The Qnox index is a novel monitor to quantify intraoperative nociception based on an electroencephalographic algorithm. We evaluated the ability of the Qnox index to discriminate noxious from non-noxious stimuli, respond to stimuli, and discriminate different levels of analgesia in patients under propofol anaesthesia with neuromuscular block.
Methods: Qnox was compared with heart rate and mean arterial pressure with five designated stimuli: tetanic stimulations without (tetanic 1) and with sufentanil (tetanic 2), skin incision, tracheal intubation, and a non-noxious period.
Paediatr Anaesth
January 2025
Department of Anesthesia, Erasmus University Medical Centre, Rotterdam, the Netherlands.
Background: In children, monitoring depth of anesthesia is challenging because of the still developing brain. Electroencephalographic density spectral array monitoring provides age- and anesthetic drug-specific electroencephalographic patterns, making it suitable for use in children. Yet, not much is known about the benefits of using density spectral array on post-operative recovery in children.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!