It was previously found that cations introduced into a discontinuous sucrose gradient exert a very pronounced effect on microsomal vesicles, and this principle proved to be effective in microsomal subfractionation. The mechanism of the cation effect was investigated. By using the radioactive isotopes (137)Cs and (85)Sr, it could be calculated that the amount of ions bound to the various subfractions increases their density by 0.14%, thereby enhancing the sedimentation velocity by only approximately 7%. In the presence of Cs(+) the total volume of the microsomal pellet was decreased by approximately 15%. Assuming this change in volume to be due to a contraction of the individual vesicles, a roughly 2(1/2)-fold increase in sedimentation velocity would be expected. It is further demonstrated, on the basis of light scattering and millipore filtration experiments, that monovalent cations cause an extensive aggregation of rough microsomes and a less pronounced aggregation of smooth microsomes. The mean radius of the sedimenting particles of rough microsomes was found to be at least doubled or trebled in the presence of Cs(+), which would give a 4- to 9-fold increase in the sedimentation velocity. Aggregation, therefore, appears to be the main factor in the accelerated sedimentation of rough microsomes in the presence of CsCl. Divalent cations exert a similar effect on a subfraction of the smooth microsomes. Isolated smooth microsomes are very unstable and often exhibit spontaneous aggregation. The presence of attached ribosomes, however, appears to impart greater stability to the rough microsomes as well as increasing their ability to bind monovalent cations. The primary cause of the aggregation of microsomal vesicles is probably due to a change in net charge.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2107034 | PMC |
http://dx.doi.org/10.1083/jcb.31.1.181 | DOI Listing |
Arch Biochem Biophys
September 2024
Department of Physiology, Faculty of Medicine, Ilam University of Medical Sciences, Ilam, Iran. Electronic address:
Objectives: Potassium channels in the endoplasmic reticulum (ER) are crucial for maintaining calcium balance during calcium fluxes. Disruption in ER calcium balance leads to ER stress, implicated in diseases like diabetes and Alzheimer's disease (AD). However, limited data exists on ER potassium channels in excitable tissues such as the brain.
View Article and Find Full Text PDFJ Trace Elem Med Biol
December 2021
Department of Physics, Università Degli Studi di Milano, Via Celoria 16, Milano, I-20133, Italy; LASA, Department of Physics, Università Degli Studi di Milano and INFN-Milano, Via F.lli Cervi 201, Segrate, MI, I-20090, Italy. Electronic address:
ACS Omega
January 2020
Departament de Bioquímica i Biologia Molecular, Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI BioTecMed), Universitat de València. E-46100 Burjassot, Spain.
A peptide corresponding to bacteriorhodopsin (bR) helix C, later named pHLIP, inserts across lipid bilayers as a monomeric α-helix at acidic pH, but is an unstructured surface-bound monomer at neutral pH. As a result of such pH-responsiveness, pHLIP targets acidic tumors and has been used as a vehicle for imaging and drug-delivery cargoes. To gain insights about the insertion of bR helix C into biological membranes, we replaced two key aspartic residues that control the topological transition from the aqueous phase into a lipid bilayer.
View Article and Find Full Text PDFJ Biol Chem
March 2019
From the Department of Biochemistry and Biophysics, Stockholm University 10691 Stockholm, Sweden and
Astrotactin 1 (Astn1) and Astn2 are membrane proteins that function in glial-guided migration, receptor trafficking, and synaptic plasticity in the brain as well as in planar polarity pathways in the skin. Here we used glycosylation mapping and protease protection approaches to map the topologies of mouse Astn1 and Astn2 in rough microsomal membranes and found that Astn2 has a cleaved N-terminal signal peptide, an N-terminal domain located in the lumen of the rough microsomal membranes (topologically equivalent to the extracellular surface in cells), two transmembrane helices, and a large C-terminal lumenal domain. We also found that Astn1 has the same topology as Astn2, but we did not observe any evidence of signal peptide cleavage in Astn1.
View Article and Find Full Text PDFFEMS Yeast Res
November 2018
School of Life Sciences, Jawaharlal Nehru University, New Delhi-110 067, India.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!