Download full-text PDF |
Source |
---|
Sci Rep
January 2025
Department of Pharmacology and Experimental Therapeutics; MS 1015, College of Pharmacy and Pharmaceutical Sciences, The University of Toledo, Health Education Building; Room 282E, 3000 Arlington Ave, Toledo, OH, 43614, USA.
We previously demonstrated that the inability of primary endothelial cilia to sense fluid shear stress can lead to nitric oxide (NO) deficiency and cause hypertension (HTN). Decreased biosynthesis of NO contributes to cerebral amyloid angiopathy in Alzheimer's disease (AD) patients through increased deposition of amyloid beta (Aβ). However, the molecular mechanisms underlying the pathogenesis of HTN and AD are incompletely understood.
View Article and Find Full Text PDFSci Rep
January 2025
Departamento Biología Experimental, Universidad de Jaén, Paraje Las Lagunillas S/N E23071, Jaén, Spain.
In this study, we investigate the G2 checkpoint activated by chromosome entanglements, the so-called Decatenation Checkpoint (DC), which can be activated by TOP2A catalytic inhibition. Specifically, we focus on the spontaneous ability of cells to bypass or override this checkpoint, referred to as checkpoint adaptation. Some factors involved in adapting to this checkpoint are p53 and MCPH1.
View Article and Find Full Text PDFPlanta
January 2025
Biological and Geological Sciences Department, Faculty of Education, Ain Shams University, Cairo, 11341, Egypt.
Under salt stress, autophagy regulates ionic balance, scavenges ROS, and supports nutrient remobilization, thereby alleviating osmotic and oxidative damage. Salt stress is a major environmental challenge that significantly impacts plant growth and agricultural productivity by disrupting nutrient balance, inducing osmotic stress, and causing the accumulation of toxic ions like Na. Autophagy, a key cellular degradation and recycling pathway, plays a critical role in enhancing plant salt tolerance by maintaining cellular homeostasis and mitigating stress-induced damage.
View Article and Find Full Text PDFDrug Metab Dispos
January 2025
Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, Texas. Electronic address:
In vitro models that can faithfully replicate critical aspects of kidney tubule function such as directional drug transport are in high demand in pharmacology and toxicology. Accordingly, development and validation of new models is underway. The objective of this study was to characterize physiologic and transport functions of various sources of human renal proximal tubule epithelial cells (RPTECs).
View Article and Find Full Text PDFEnviron Res
January 2025
UMR-MARBEC, Université de Montpellier, CNRS, Ifremer, IRD, Place Eugène Bataillon, Montpellier 34095, France; Australian Rivers Institute, Griffith University, Gold Coast, 4215 Queensland, Australia. Electronic address:
The effects that anthropogenic stressors may have on modulating species' plasticity has been relatively unexplored; however, it represents a scientific frontier that may offer insights into their ability to colonize new habitats. To explore the advantage that inhabiting polluted environments may offer to invasive species, we selected the crayfish Procambarus clarkii, a species that can colonize and thrive in a wide range of aquatic environments, including heavily polluted ones. Here, we studied the molecular and physiological responses of crayfish when experimentally exposed to a pesticide mix of azoxystrobin and oxadiazon at sublethal concentrations.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!