Download full-text PDF

Source

Publication Analysis

Top Keywords

surface dissected
4
dissected neurons
4
neurons neurons
4
neurons smears
4
smears cultivated
4
cultivated cells
4
cells sections
4
sections studied
4
studied scanning
4
scanning electron
4

Similar Publications

Platelet cells are essential to maintain haemostasis and play a critical role in thrombosis. They swiftly respond to vascular injury by adhering to damaged vessel surfaces, activating signalling pathways, and aggregating with each other to control bleeding. This dynamic process of platelet activation is intricately coordinated, spanning from membrane receptor maturation to intracellular interactions to whole-cell responses.

View Article and Find Full Text PDF

To report the cosmetic, clinical, and visual outcomes of a combined surgical approach for treating a corneal/limbal dermoid using excision and a three-layered amniotic membrane graft with fibrin glue. An 18-year-old female presented with impaired vision and ocular discomfort caused by a prominent dome-shaped limbal congenital dermoid on the inferotemporal cornea, resulting in a significant aesthetic concern. A full assessment, including refraction, best-corrected visual acuity (BCVA), corneal topography, aberrometry and anterior segment OCT (AS-OCT) was conducted to plan the surgical approach.

View Article and Find Full Text PDF

Decoding the Therapeutic Target SVEP1: Harnessing Molecular Trait GWASs to Unravel Mechanisms of Human Disease.

Annu Rev Pharmacol Toxicol

January 2025

Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, Saint Louis, Missouri, USA; email:

Although human genetics has substantial potential to illuminate novel disease pathways and facilitate drug development, identifying causal variants and deciphering their mechanisms remain challenging. We believe these challenges can be addressed, in part, by creatively repurposing the results of molecular trait genome-wide association studies (GWASs). In this review, we introduce techniques related to molecular GWASs and unconventionally apply them to understanding , a human coronary artery disease risk locus.

View Article and Find Full Text PDF

Dissecting the biophysical mechanisms of oleate hydratase association with membranes.

Front Mol Biosci

January 2025

Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky, Lexington, KY, United States.

This study investigates the dynamics of oleate hydratase (OhyA), a bacterial flavoenzyme from , and its interactions with lipid membranes, focusing on the factors influencing membrane binding and oligomerization. OhyA catalyzes the hydration of unsaturated fatty acids, playing a key role in bacterial pathogenesis by neutralizing host antimicrobial fatty acids. OhyA binds the membrane bilayer to access membrane-embedded substrates for catalysis, and structural studies have revealed that OhyA forms oligomers on membrane surfaces, stabilized by both protein-protein and protein-lipid interactions.

View Article and Find Full Text PDF

Spatial deconvolution from bulk DNA methylation profiles determines intratumoral epigenetic heterogeneity.

Cell Biosci

January 2025

Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, 26 Yuancun Erheng Road, Guangzhou, 510655, Guangdong, China.

Background: Intratumoral heterogeneity emerges from accumulating genetic and epigenetic changes during tumorigenesis, which may contribute to therapeutic failure and drug resistance. However, the lack of a quick and convenient approach to determine the intratumoral epigenetic heterogeneity (eITH) limit the application of eITH in clinical settings. Here, we aimed to develop a tool that can evaluate the eITH using the DNA methylation profiles from bulk tumors.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!