Download full-text PDF

Source

Publication Analysis

Top Keywords

glutaraldehyde induced
4
induced activation
4
activation polymerization
4
polymerization horse
4
horse liver
4
liver alcohol
4
alcohol dehydrogenase
4
glutaraldehyde
1
activation
1
polymerization
1

Similar Publications

This study investigates the mechanical properties as well as and cyto- and biocompatibility of collagen membranes cross-linked with glutaraldehyde (GA), proanthocyanidins (PC), hexamethylendiisocyanate (HMDI) and 1-Ethyl-3-(3-dimethylaminopropyl) carbodiimide/N-hydroxysuccinimide (EC/NHS). A non-crosslinked membrane was used as reference control (RF). The initial cytotoxic analyses revealed that the PC, EC, and HMDI crosslinked membranes were cytocompatible, while the GA crosslinked membrane was cytotoxic and thus selected as positive control in the further study.

View Article and Find Full Text PDF

Glutaraldehyde (GLU) is mainly used in medicine by healthcare workers during infection control as a chemical disinfectant. It has been linked to numerous health hazards that range from asthma to irritation of the eye to contact dermatitis. Citrullus colocynthis (C.

View Article and Find Full Text PDF

Spatiotemporal Retention of Structural Color and Induced Stiffening in Crosslinked Hydroxypropyl Cellulose Beads.

Macromol Rapid Commun

December 2024

Department of Fibre and Polymer Technology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm, SE-100 44, Sweden.

Hydroxypropyl cellulose (HPC) is known for its ability to form cholesteric liquid crystalline phases displaying vivid structural colors. However, these vibrant colors tend to fade over time when the material dries. This issue is a major bottleneck to finding practical applications for these materials.

View Article and Find Full Text PDF

Stiffness-related eye diseases such as keratoconus require comprehensive visualization of the complex morphological matrix changes. The aim of this study was to use three-dimensional (3D) light sheet fluorescence microscopy (LSFM) to analyze unlabeled corneal tissue samples, qualitatively visualizing changes in corneal stiffness. Isolated porcine corneal tissue samples were treated with either NaCl or 0.

View Article and Find Full Text PDF

Bone tissue engineering (BTE) aims to repair and regenerate damaged bone tissue by combining cells, scaffolds, and signaling molecules. Various macromolecules, including natural polymers like chitosan (CS), collagen, hyaluronic acid, and alginate, as well as synthetic polymers such as polyethylene glycol and polylactic acid, are used in scaffold fabrication. Among these, CS holds significant potential in BTE due to its biocompatibility, biodegradability, and other features.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!