Download full-text PDF |
Source |
---|
ChemSusChem
January 2025
Universita degli Studi di Ferrara, Dipartimento di Scienze Chimiche e Farmaceutiche, Via Borsari 46, 44121, Ferrara, ITALY.
Direct photochemical conversion of CO2 into a single carbon-based product currently represents one of the major issues in the catalysis of the CO2 reduction reaction (CO2RR). In this work, we demonstrate that the combination of an organic photosensitizer with a heptacoordinated iron(II) complex allows to attain a noble-metal-free photochemical system capable of efficient and selective conversion of CO2 into CO upon light irradiation in the presence of N,N-diisopropylethylamine (DIPEA) and 2,2,2-trifluoroethanol (TFE) as the electron and proton donor, respectively, with unprecedented performances (ΦCO up to 36%, TONCO > 1000, selectivity > 99%). As shown by transient absorption spectroscopy studies, this can be achieved thanks to the fast rates associated with the electron transfer from the photogenerated reduced dye to the catalyst, which protect the dye from parallel degradation pathways ensuring its stability along the photochemical reaction.
View Article and Find Full Text PDFMicrobiol Res
January 2025
College of Veterinary Medicine, Northeast Agricultural University, Harbin, China. Electronic address:
The clinical effectiveness of colistin against multidrug-resistant Gram-negative pathogen infections has been threatened by the emergence of the plasmid-mediated colistin-resistant gene mcr-1. This development underscores the urgent need for innovative therapeutic strategies that target resistance mechanisms. In this study, we demonstrated that glabridin can restore the sensitivity of colistin to mcr-1-positive Escherichia coli (E.
View Article and Find Full Text PDFChem Sci
January 2025
Department of Chemical Sciences, Indian Institute of Science Education and Research Mohanpur 741246 Kolkata India
Developing a self-sensitized catalyst from earth-abundant elements, capable of efficient light harvesting and electron transfer, is crucial for enhancing the efficacy of CO transformation, a critical step in environmental cleanup and advancing clean energy prospects. Traditional approaches relying on external photosensitizers, comprising 4d/5d metal complexes, involve intermolecular electron transfer, and attachment of photosensitizing arms to the catalyst necessitates intramolecular electron transfer, underscoring the need for a more integrated solution. We report a new Cu(ii) complex, K[CuNDPA] (1[K(18-crown-6)]), bearing a dipyrrin amide-based trianionic tetradentate ligand, NDPA (HL), which is capable of harnessing light energy, despite having a paramagnetic Cu(ii) centre, without any external photosensitizer and photocatalytically reducing CO to CO in acetonitrile : water (19 : 1 v/v) with a TON as high as 1132, a TOF of 566 h and a selectivity of 99%.
View Article and Find Full Text PDFSci Rep
December 2024
Division of Radiation Oncology, Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
Aggressive breast cancers often fail or acquire resistance to radiotherapy. To develop new strategies to improve the outcome of aggressive breast cancer patients, we studied how PARP inhibition radiosensitizes breast cancer models to proton therapy, which is a radiotherapy modality that generates more DNA damage in the tumor than standard radiotherapy using photons. Two human BRCA1-mutated breast cancer cell lines and their isogenic BRCA1-recovered pairs were treated with a PARP inhibitor and irradiated with photons or protons.
View Article and Find Full Text PDFSci Adv
December 2024
Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH 44106-4970, USA.
Glycine receptors (GlyRs) regulate motor control and pain processing in the central nervous system through inhibitory synaptic signaling. The subtype GlyRα3 expressed in nociceptive sensory neurons of the spinal dorsal horn is a key regulator of physiological pain perception. Disruption of spinal glycinergic inhibition is associated with chronic inflammatory pain states, making GlyRα3 an attractive target for pain treatment.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!