When monolayers of freshly obtained rabbit lung macrophages are exposed to the nucleoside analogue, showdomycin (sho), adenosine transport, measured over a 45 s interval, is irreversibly inhibited. Low doses of the drug or short periods of exposure, however, do not result in decreased transport, while higher concentrations or longer exposures result in exponential decline. The initial lag is not due to a long reaction time of sho with the transport carrier or to nonspecific sites absorbing the drug. Previously it was shown that preincubation of monolayers with normal rabbit serum (NRS) results in increased adenosine transport. When monolayers are first exposed to sho so as to inhibit transport to varying degrees and then incubated with NRS, transport is increased over the inhibited level. Several experiments make it unlikely that serum removes the drug from the cell surface in a nonspecific fashion. Moreover, serum given before, during, or after sho alters the dose response curve so that no shoulder is seen. One way to explain these results makes use of target theory: the adenosine transport system could be comprised mainly of "coupled" or "clustered" sites of which only one is active at any time as well as "hidden" sites which are inactive. When a site in a group is irreversibly inactivated by sho, another in the group becomes activated. Serum might activate or uncouple all sites and also cause the appearance of hidden sites, which previously neither transported nor bound sho.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2109236 | PMC |
http://dx.doi.org/10.1083/jcb.60.3.571 | DOI Listing |
Commun Biol
January 2025
Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto, 606-8501, Japan.
P4-ATPases, a subfamily of the P-type ATPase superfamily, play a crucial role in translocating membrane lipids from the exoplasmic/luminal leaflet to the cytoplasmic leaflet. This process generates and regulates transbilayer lipid asymmetry. These enzymes are conserved across all eukaryotes, and the human genome encodes 14 distinct P4-ATPases.
View Article and Find Full Text PDFOncol Res
January 2025
Department of Physiology, China Medical University, Taichung, 404328, Taiwan.
Objectives: Mitochondrial Ca uniporter (MCU) provides a Ca influx pathway from the cytosol into the mitochondrial matrix and a moderate mitochondrial Ca rise stimulates ATP production and cell growth. MCU is highly expressed in various cancer cells including breast cancer cells, thereby increasing the capacity of mitochondrial Ca uptake, ATP production, and cancer cell proliferation. The objective of this study was to examine MCU inhibition as an anti-cancer mechanism.
View Article and Find Full Text PDFPest Manag Sci
January 2025
Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, USA.
Background: Bed bugs are blood-feeders that rapidly proliferate into large indoor infestations. Their bites can cause allergies, secondary infections and psychological stress, among other problems. Although several tactics for their management have been used, bed bugs continue to spread worldwide wherever humans reside.
View Article and Find Full Text PDFJ Integr Neurosci
January 2025
Department of Hepatology, Federal University of Health Sciences of Porto Alegre (UFCSPA), 90050-170 Porto Alegre, Rio Grande do Sul (RS), Brazil.
Mitochondria are organelles of eukaryotic cells delimited by two membranes and cristae that consume oxygen to produce adenosine triphosphate (ATP), and are involved in the synthesis of vital metabolites, calcium homeostasis, and cell death mechanisms. Strikingly, normal mitochondria function as an integration center between multiple conditions that determine neural cell homeostasis, whereas lesions that lead to mitochondrial dysfunction can desynchronize cellular functions, thus contributing to the pathophysiology of traumatic brain injury (TBI). In addition, TBI leads to impaired coupling of the mitochondrial electron transport system with oxidative phosphorylation that provides most of the energy needed to maintain vital functions, ionic homeostasis, and membrane potentials.
View Article and Find Full Text PDFNutrients
January 2025
Department of Physiology, University of Louisville School of Medicine, Louisville, KY 40202, USA.
Background/objectives: Chronic gut dysbiosis due to a high-fat diet (HFD) instigates cardiac remodeling and heart failure with preserved ejection fraction (HFpEF), in particular, kidney/volume-dependent HFpEF. Studies report that although mitochondrial ATP citrate lyase (ACLY) supports cardiac function, it decreases more in human HFpEF than HFrEF. Interestingly, ACLY synthesizes lipids and creates hyperlipidemia.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!