Phosphorylation of ribosomal proteins in vivo was studied in exponentially growing and starved cells of the ciliated protozoan, Tetrahymena pyriformis. No phosphorylation of ribosomal proteins could be demonstrated in cells growing exponentially in complex nutrient media. However, when Tetrahymena cells were transferred into a non-nutrient medium, pronounced phosphorylation of a single ribosomal protein was observed. During two-dimensional polyacrylamide gel electrophoresis the phosphorylated ribosomal protein migrated in a manner virtually identical to that of the phosphorylated ribosomal protein S6 of rat liver. The phosphorylated ribosomal protein has a molecular weight of 38000 as estimated by dodecylsulfate polyacrylamide gel electrophoresis. Thus, the phosphorylated ribosomal protein found in starved Tetrahymena is apparently homologous with the ribosomal protein which is predominantly phosphorylated in higher eukaryotes. When phosphorylated ribosomes were dissociated by treatment with high concentration of KCl, the phosphorylated protein was found only on the small subunit. If dissociation was achieved by dialysis against a buffer low in MgCl2, the phosphorylated protein was distributed almost equally between the two subunits. This indicates that the phosphorylated ribosomal protein is located at the interface between the two subunits.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1432-1033.1978.tb12105.xDOI Listing

Publication Analysis

Top Keywords

ribosomal protein
28
phosphorylated ribosomal
20
ribosomal
9
protein
9
phosphorylated
9
tetrahymena pyriformis
8
pyriformis phosphorylation
8
phosphorylation ribosomal
8
ribosomal proteins
8
polyacrylamide gel
8

Similar Publications

In many bacteria, the location of the mRNA start codon is determined by a short ribosome binding site sequence that base pairs with the 3'-end of 16S rRNA (rRNA) in the 30S subunit. Many groups have changed these short sequences, termed the Shine-Dalgarno (SD) sequence in the mRNA and the anti-Shine-Dalgarno (ASD) sequence in 16S rRNA, to create "orthogonal" ribosomes to enable the synthesis of orthogonal polymers in the presence of the endogenous translation machinery. However, orthogonal ribosomes are prone to SD-independent translation.

View Article and Find Full Text PDF

Pollen germination and pollen tube (PT) growth are extremely sensitive to high temperatures. During heat stress (HS), global translation shuts down and favors the maintenance of the essential cellular proteome for cell viability and protection against protein misfolding. Here, we demonstrate that under normal conditions, the Arabidopsis (Arabidopsis thaliana) eukaryotic translation initiation factor subunit eif3m1/eif3m2 double mutant exhibits poor pollen germination, loss of PT integrity and an increased rate of aborted seeds.

View Article and Find Full Text PDF

Frameshifting is an essential mechanism employed by many viruses including coronaviruses to produce viral proteins from a compact RNA genome. It is facilitated by specific RNA folds in the frameshift element (FSE), which has emerged as an important therapeutic target. For SARS-CoV-2, a specific 3-stem pseudoknot has been identified to stimulate frameshifting.

View Article and Find Full Text PDF

IRAP Drives Ribosomal Degradation to Refuel Energy for Platelet Activation during Septic Thrombosis.

Adv Sci (Weinh)

January 2025

State Key Laboratory of Trauma and Chemical Poisoning, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China.

Platelets play crucial roles in multiple pathophysiological processes after energy-dependent activation. It is puzzling how such a small cellular debris has abundant energy supply. In this study, it is shown that insulin-regulated aminopeptidase (IRAP), a type II transmembrane protein, is a key regulator for platelet activation by promoting energy regeneration during septic thrombosis.

View Article and Find Full Text PDF

Ribosomal RNA is the main component of the ribosome, which is essential for protein synthesis. The diploid human genome contains several hundred copies of the rDNA transcription unit (TU). Droplet digital PCR and deep bisulfite sequencing were used to determine the absolute copy number (CN) and the methylation status of individual rDNA TU in blood samples of healthy individuals.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!