The effect of gentamicin against 130 clinical isolates of Pseudomonas aeruginosa was compared with that of two investigational aminoglycoside antibiotics, tobramycin and amikacin. Minimal inhibitory concentration data indicated that, on a weight basis, tobramycin was two to four times as active as gentamicin against most isolates. However, 14 of 18 organisms highly resistant to gentamicin (>/=80 mug/ml) were also highly resistant to tobramycin. Amikacin was the least active aminoglycoside on a weight basis, but none of the isolates were highly resistant to this antibiotic. When therapeutically achievable concentrations were used, adding carbenicillin to gentamicin or to tobramycin enhanced inhibitory activity against those isolates susceptible (=5 mug/ml) or moderately resistant (10 to 40 mug/ml) to the aminoglycoside. Such synergy was seldom demonstrated for isolates highly resistant to gentamicin or tobramycin. The combination of carbenicillin and amikacin enhanced inhibition against all but two of the isolates. Both tobramycin and amikacin offer in vitro advantages over gentamicin against P. aeruginosa.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC444668 | PMC |
http://dx.doi.org/10.1128/AAC.6.4.442 | DOI Listing |
J Intensive Med
January 2025
Department of Pneumology, Institut Clinic del Tórax, Hospital Clinic of Barcelona - Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona - SGR 911- Ciber de Enfermedades Respiratorias (Ciberes), Barcelona, Spain.
Aminoglycosides are concentration-dependent antibiotics exerting a bactericidal effect when concentrations at the site of infection are equal to or greater than 5 times the minimum inhibitory concentrations (MIC). When administered intravenously, they exhibit poor lung penetration and high systemic renal and ototoxicity, imposing to restrict their administration to 5 days. Experimental studies conducted in anesthetized and mechanically ventilated sheep and pigs provide evidence that high doses of nebulized aminoglycosides induce a rapid and potent bacterial killing in the infected lung parenchyma.
View Article and Find Full Text PDFPharmaceutics
January 2025
School of Pharmacy, Queen's University Belfast, Belfast BT9 7BL, UK.
This paper presents a comprehensive review of the current literature, clinical trials, and products approved for the delivery of antibiotics to the lungs. While there are many literature reports describing potential delivery systems, few of these have translated into marketed products. Key challenges remaining are the high doses required and, for powder formulations, the ability of the inhaler and powder combination to deliver the dose to the correct portion of the respiratory tract for maximum effect.
View Article and Find Full Text PDFVet Sci
January 2025
Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
In order to investigate the bacterial species present in the conjunctival sacs of dogs with bacterial conjunctivitis in Wuhan (Hongshan District, Wuchang District, Jiangxia District, and Huangpi District) and their resistance to aminoglycoside antibiotics, samples of conjunctival sac secretions were collected from 56 dogs with bacterial conjunctivitis in various regions of Wuhan. Drug susceptibility testing for aminoglycoside antibiotics was performed on the most commonly isolated gram-positive and gram-negative bacteria. The expression of two aminoglycoside modifying enzyme genes, and , and three 16S rRNA methyltransferase genes, , and , were analyzed by PCR.
View Article and Find Full Text PDFBackground: The transmission of Salmonella spp. to human through the consumption of contaminated food products of animal origin, mainly poultry is a significant global public health concern. The emerging multidrug resistant (MDR) clones of non-typhoidal Salmonella (NTS) serovars, have spread rapidly worldwide both in humans and in the food chain.
View Article and Find Full Text PDFVet Ophthalmol
January 2025
Laboratory of Veterinary Surgery and Ophthalmology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Korea.
Objective: To investigate the impact of dexamethasone on the antibiotic susceptibility of common ocular pathogens in dogs and identify safe antibiotic-steroid combinations for veterinary ophthalmology.
Methods: This study utilized 30 bacterial isolates of Staphylococcus pseudintermedius, Streptococcus canis, and Pseudomonas aeruginosa, collected from canine patients with suspected bacterial keratitis. The isolates were tested against 17 antibiotics in the presence of dexamethasone concentrations ranging from 0 to 2 mg/mL.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!