Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1177/22.7.453 | DOI Listing |
Wave mixing (WM) techniques are crucial for applications such as supercontinuum generation, frequency conversion, and high-dimensional quantum encoding. However, their efficiency is often limited by complex phase-matching requirements, and current insights into phase-matching mechanisms for high-order WM remain limited. To address this, compact optical path configurations with high-peak-power, synchronous, multicolor ultrafast laser sources are needed to enhance high-order wave-mixing efficiency.
View Article and Find Full Text PDFLarge energy single-frequency nanosecond (ns) near-infrared light source is an essential device in the field of the remote chemical analysis based on the laser-induced breakdown spectroscopy (LIBS). In this paper, a large energy single-frequency ns 824 nm light source with high repetition rate is presented, which is generated from a seed-injection locked optical parametric oscillator (OPO). By optimizing the spot radius of the pump laser and the mode-matching between the pump laser and signal light, the optical parametric generation (OPG) process is effectively eliminated.
View Article and Find Full Text PDFA 2.6-fold spectral broadening of mid-infrared femtosecond µJ-level pulses has been achieved using an unfolded multi-pass configuration of germanium plates and zinc selenide lenses. This method maintains a throughput higher than 60% while preserving the spatial quality and the temporal duration of the input beam.
View Article and Find Full Text PDFPreviously we reported color matches measured in young adults using a newly developed multi-wavelength LED-based visual trichromator with which we estimated their individual L-, M- and S-cone spectral sensitivities. Here, we extend those measurements to include 70 additional observers aged between 8 to 80 years. As in our previous work, a series of color matching measurements were made to a reference white.
View Article and Find Full Text PDFRecently, the dissipative soliton (DS) generation in the positive fourth-order-dispersion (FOD) fiber laser has been theoretically predicted, namely dissipative pure-quartic soliton (DPQS), featuring a higher energy-scaling ability compared to conventional DS dominated by positive group velocity dispersion. Here, we discover that the formation of spectral sidebands is always accompanying by the stabilized DPQS in the fiber laser, which is different from the conventional DS. Due to the combination of positive FOD and self-phase modulation, low- and high-frequency components are distributed at the leading and trailing edges of the pulse, forming the pedestals that propagate with it.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!