The binding of dihydrostreptomycin to ribosomes and ribosomal subunits of a number of different Escherichia coli strains was studied, and the Mg(2+) and pH dependence, as well as the effect of salts and polynucleotides, was determined. The only requirement for binding with ribosomes and subunits from susceptible strains was 10 mm Mg(2+). Monovalent salts weakened the binding in a manner similar to the effects on ribonucleic acid secondary structure, and this was antagonized to some extent by increased amounts of Mg(2+). Bound dihydrostreptomycin could be readily exchanged by streptomycin and any antibiotically active derivative, but not by fragments of the antibiotic or any other aminoglycoside. With native (run-off) 70S ribosomes from streptomycin-susceptible strains, the binding was rapid and relatively temperature independent over the range from 0 to 37 C. Polynucleotides did not stimulate the binding. With concentrations of dihydrostreptomycin up to 10(-5)m, greater than 95% of native 70S ribosomes bound exactly 1 molecule of the antibiotic tightly, with a K(diss) for the bound complex at 25 C of 9.4 x 10(-8)m. The following thermodynamic parameters were found for the binding with 70S ribosomes at 25 C:DeltaG degrees = -9.6 kcal/mole, DeltaH degrees = -6.2 kcal/mole, and DeltaS degrees = +11.4 entropy units/mole. Differences in affinity for the antibiotic were found between ribosomes of K-12 strains and those of other E. coli strains. There was insignificant binding to 70S ribosomes or subunits from streptomycin-resistant or -dependent strains, and to 50S subunits from susceptible strains. The binding to 30S subunits from susceptible strains was weaker by an order of magnitude than that to the 70S particle, with a K(diss) at 25 C of 10(-6)m. Polyuridylic acid stimulated this binding slightly but did not influence the affinity of the bound molecule. At antibiotic concentrations above 10(-5)m, streptomycin-susceptible 70S and 30S particles bound additional molecules of the antibiotic, and binding also occurred to ribosomes from streptomycin-resistant and -dependent strains, as well as to 50S subunits from all strains. K(diss) for all of these binding equilibria were [Formula: see text] 10(-4)m. This weaker non-specific binding coincided with the beginning of aggregation phenomena involving the particles, and occurred at sites distinct from the single site which binds the antibiotic tightly. This latter site was completely lost after the one-step mutation to high-level resistance or dependence.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC444310PMC
http://dx.doi.org/10.1128/AAC.2.4.294DOI Listing

Publication Analysis

Top Keywords

70s ribosomes
16
binding
13
subunits susceptible
12
susceptible strains
12
strains
10
ribosomes
9
binding dihydrostreptomycin
8
escherichia coli
8
coli strains
8
ribosomes subunits
8

Similar Publications

In bacteria, spontaneous mRNAs degradation and ribotoxin-induced RNA damage are two main biological events that lead to the stall of protein translation. The ubiquitous trans-translation system as well as several alternative rescue factors (Arfs) are responsible for rescuing the stalled ribosomes caused by truncated mRNAs that lack the stop codons. To date, protein release factor homolog (PrfH) is the only factor known to rescue the stalled ribosome damaged by ribotoxins.

View Article and Find Full Text PDF

Novel archaeal ribosome dimerization factor facilitating unique 30S-30S dimerization.

Nucleic Acids Res

January 2025

Central European Institute of Technology, Masaryk University, Kamenice 5, Brno 625 00, Czech Republic.

Protein synthesis (translation) consumes a substantial proportion of cellular resources, prompting specialized mechanisms to reduce translation under adverse conditions. Ribosome inactivation often involves ribosome-interacting proteins. In both bacteria and eukaryotes, various ribosome-interacting proteins facilitate ribosome dimerization or hibernation, and/or prevent ribosomal subunits from associating, enabling the organisms to adapt to stress.

View Article and Find Full Text PDF

Proline-Rich Antimicrobial Peptides from Invertebrates.

Molecules

December 2024

Department of Immunobiology, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19 St., 20-033 Lublin, Poland.

Antimicrobial peptides (AMPs) constitute a large and diverse group of molecules with antibacterial, antifungal, antiviral, antiprotozoan, and anticancer activity. In animals, they are key components of innate immunity involved in fighting against various pathogens. Proline-rich (Pr) AMPs are characterized by a high content of proline (and arginine) residues that can be organized into Pro-Arg-Pro motifs.

View Article and Find Full Text PDF

Prokaryotic ABCF proteins in overcoming ribosomal stalling: mechanisms, evolution, and perspective for applications in Bio-manufacturing.

Biosci Biotechnol Biochem

December 2024

Department of Biotechnology, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu-shi, Toyama, Japan.

ABCF proteins (ABCFs) are key components of prokaryotic translation systems, resolving ribosomal stalling. These ATPases contain two ATPase domains and interdomain linker, the length and composition of which are key determinants of their function. Antibiotic resistance ABCF (ARE-ABCFs) proteins, counteract ribosome-targeting antibiotics by binding to the E site of the 70S ribosome, promoting drug dissociation.

View Article and Find Full Text PDF

Crucial role and conservation of the three [2Fe-2S] clusters in the human mitochondrial ribosome.

J Biol Chem

December 2024

Institut für Zytobiologie im Zentrum für Synthetische Mikrobiologie SynMikro, Philipps-Universität Marburg, Marburg, Germany. Electronic address:

Mitochondria synthesize only a small set of their proteins on endogenous mitoribosomes. These particles differ in structure and composition from both their bacterial 70S ancestors and cytosolic 80S ribosomes. Recently published high resolution structures of the human mitoribosome revealed the presence of three [2Fe-2S] clusters in the small and large subunits.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!