Download full-text PDF |
Source |
---|
Front Cell Dev Biol
December 2024
Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China.
Plant-driven extracellular vesicles (PEVs) have attracted significant interest due to their natural origin, remarkable bioactivity, and efficacy in drug encapsulation and target delivery. In our work, extracellular vesicles from Citri Reticulate Pericranium (CEVs) were isolated and investigated their physicochemical characteristics and biological activities. We identified the vesicle structures as regular, with a particle size of approximately 200 nm.
View Article and Find Full Text PDFACS Synth Biol
January 2025
Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan.
Bacterial outer membrane vesicles (OMVs) have emerged as promising vehicles for anticancer drug delivery due to their inherent tumor tropism, immune-stimulatory properties, and potential for functionalization with therapeutic proteins. Despite their advantages, the high lipopolysaccharide (LPS) endotoxin content in the OMVs raises significant safety and regulatory challenges. In this work, we produce LPS-attenuated and LPS-free OMVs and systematically assess the effects of LPS modification on OMVs' physicochemical characteristics, membrane protein content, immune-stimulatory capacity, tolerability, and anticancer efficacy.
View Article and Find Full Text PDFJ Biol Eng
January 2025
Department of Biomedical Engineering, China Medical University, Taichung, 406040, Taiwan.
Bone defects present a significant challenge in orthopedics and trauma surgery, necessitating innovative approaches to stimulate effective bone regeneration. This study investigated the potential of lithium-doped calcium silicate (LiCS) cement to enhance bone regeneration and modulate the immune microenvironment to promote tissue repair. We synthesized a LiCS ceramic powder and performed comprehensive analyses of its physicochemical properties, including phase composition, morphology, setting time, and mechanical strength.
View Article and Find Full Text PDFCurr Microbiol
January 2025
Key Laboratory of Basic and Application Research of Beiyao, Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin, 150040, China.
Comprehending the interplay between the microbial communities of bulk soil (BS) and rhizosphere soil (RS) holds crucial significance in maintaining soil health and fertility, as well as enhancing crop quality. Our research focused on examining these microbial communities in BS and RS of Acanthopanax senticosus, along with their correlation with soil nutrients, across three distinct habitats in Yichun, Heilongjiang Province. To achieve this, we employed high-throughput sequencing technology, specifically targeting the 16S and amplicon regions.
View Article and Find Full Text PDFCurr Microbiol
January 2025
Brewing Technology Industrial College, Hubei University of Arts and Sciences, Xiangyang, Hubei, China.
To investigate the bacterial community structure and physicochemical characteristics of different types of Daqu in the Binzhou region, this study employed traditional pure culture methods, high-throughput sequencing technology, and conventional physicochemical assays for analysis. The research results indicate that Enterococcus faecium and Bacillus licheniformis emerged as the main LAB and Bacillus species in Daqu from Binzhou region, respectively. In addition, high-throughput sequencing revealed significant differences in bacterial community structure between the two types of Daqu (P < 0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!