Natural killer (NK) and lymphokine activated killer (LAK) cell activities in 133 healthy volunteers were analyzed with regard to the volunteer's sex, age, smoking history and the familial incidence of cancer. None of these factors had any influence on NK and LAK cell activities. It was concluded that identifying individuals with increased risk of cancer development by examining NK and LAK activities would be difficult.

Download full-text PDF

Source

Publication Analysis

Top Keywords

lak cell
12
natural killer
8
killer lak
8
healthy volunteers
8
familial incidence
8
incidence cancer
8
cell activities
8
killer lymphokine-activated
4
lymphokine-activated killer
4
lak
4

Similar Publications

Quantitative investigation of a 3D bubble trapper in a high shear stress microfluidic chip using computational fluid dynamics and L*A*B* color space.

Biomed Microdevices

January 2025

Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, 111 Suwannabhumi Canal Rd, Bang Pla, Bang Phli District, Samut Prakan, 10540, Thailand.

Microfluidic chips often face challenges related to the formation and accumulation of air bubbles, which can hinder their performance. This study investigated a bubble trapping mechanism integrated into microfluidic chip to address this issue. Microfluidic chip design includes a high shear stress section of fluid flow that can generate up to 2.

View Article and Find Full Text PDF

Humans have more than 270,000 lncRNAs. Among these, lncRNA HOXA-AS2 is considered a transformative gene involved in various cellular processes, including cell proliferation, apoptosis, migration, and invasion. Thus, it can be regarded as a potential tumor marker for both diagnosis and prognosis.

View Article and Find Full Text PDF
Article Synopsis
  • This study focused on how the adenosine A3 receptor (A3AR) influences the progression of metabolic dysfunction-associated steatotic liver disease (MASLD) through the regulation of immune cells, particularly pro-inflammatory Kupffer cells derived from monocytes (MoKCs).
  • Researchers found that inhibiting A3AR, either through a drug called FM101 or by genetic deletion, significantly improved liver inflammation and fibrosis in model mice.
  • The results suggest that targeting A3AR may offer a novel therapeutic approach for treating MASLD by inducing cell death (necroptosis) in harmful immune cells, thereby promoting a healthier liver environment.
View Article and Find Full Text PDF

Vγ9Vδ2 T cells constitute a homogeneous effector T cell population that lyses tumors of different origin, including the prostate. We generated a bispecific T cell engager (bsTCE) to direct Vγ9Vδ2 T cells to PSMA prostate cancer (PCa) cells. The PSMA-Vδ2 bsTCE triggered healthy donor and PCa patient-derived Vγ9Vδ2 T cells to lyse PSMA PCa cell lines and patient-derived tumor cells while sparing normal prostate cells and enhanced Vγ9Vδ2 T cell antigen cross-presentation to CD8 T cells.

View Article and Find Full Text PDF

Exploiting acquired vulnerability to develop novel treatments for cholangiocarcinoma.

Cancer Cell Int

November 2024

Siriraj Center of Research Excellence (SiCORE) for Systems Pharmacology, Department of Pharmacology, Faculty of Medicine, Siriraj Hospital, Mahidol University, 2 Wanglang Rd., 11th Floor Srisavarindhira Building, Bangkok Noi, 10700, Bangkok, Thailand.

Cholangiocarcinoma (CCA) presents a formidable therapeutic challenge due to its extensive heterogeneity and plasticity, which inevitably lead to acquired resistance to current treatments. However, recent evidence suggests that acquired drug resistance is associated with a fitness cost resulting from the myriad of acquired alterations under the selective pressure of the primary treatment. Consequently, CCA patients with acquired resistance are more susceptible to alternative therapies that are ineffective as monotherapies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!