A detailed analysis is presented of the small-angle neutron scattering curves of homogeneous solutions of influenza B virus, both intact and after treatment with bromelain, which removes the external glycoprotein spikes. The two sets of data are consistent with the following low-resolution structure: the virus particles are spherical, about 1200 A in diameter and of Mr about 180 X 10(6). The lipid bilayer is centred at a radius of 425 A, is 40 A to 50 A thick and constitutes 25% to 28% of the virus mass. The surface glycoproteins, predominantly haemagglutinin, contribute 40% to 46% of the total mass. Surprisingly little protein is found in the interior of the virus. It is suggested that the reason for this is that many particles do not contain the full complement of ribonucleoprotein complexes. These results are in good agreement with recent scanning transmission electron microscopic measurements of molecular mass and cryo-electron microscopic observations of the same preparations. Appendix 1 describes a new method of deriving spherical shell models from contrast variation neutron scattering data on viruses, in which scattering curves from all measured contrasts are used simultaneously. There is also a discussion of the assumptions and limitations implicit in the structural interpretation of such models, with emphasis on viruses containing lipid bilayers. Appendix 2 examines the effect on the scattering curves of various arrangements of the surface glycoproteins.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/0022-2836(85)90131-7 | DOI Listing |
Langmuir
January 2025
Polymer Science and Engineering Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India.
2,2-Bis-(methylol)propionic acid-based second-generation polyester dendron amphiphile (T-D) containing visible light-responsive donor-acceptor Stenhouse adduct (DASA) as hydrophobic tails is synthesized. Micelles of T-D amphiphile and its mixed micelles of varying compositions with nonresponsive dendron amphiphile containing lauryl groups are prepared in aqueous solution. In transmission electron microscopy and atomic force microscopy analyses, T-D amphiphiles show rice grain-like ellipsoidal micelles as the predominant morphology.
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2025
Université Paris Cité, CNRS, Laboratoire de Biochimie Théorique, 13 rue Pierre et Marie Curie, 75005, Paris, France.
Tetramethylammonium (TMA) is a ubiquitous cationic motif in biochemistry, found in the charged choline headgroup of membrane phospholipids and in tri-methylated lysine residues, which modulates histone-DNA interactions and impacts epigenetic mechanisms. TMA interactions with anionic species, particularly carboxylate groups of amino acid residues and extracellular sugars, are of substantial biological relevance, as these interactions mediate a wide range of cellular processes. This study investigates the molecular interactions between TMA and acetate, representing carboxylate-containing groups, using neutron scattering experiments complemented by force fields and molecular dynamics (MD) simulations.
View Article and Find Full Text PDFNanomaterials (Basel)
December 2024
Emerging Technologies Research Center, XPANCEO, Internet City, Emmay Tower, Dubai, United Arab Emirates.
Due to their high refractive index, record optical anisotropy and a set of excitonic transitions in visible range at a room temperature, transition metal dichalcogenides have gained much attention. Here, we adapted a femtosecond laser ablation for the synthesis of WSe nanoparticles (NPs) with diameters from 5 to 150 nm, which conserve the crystalline structure of the original bulk crystal. This method was chosen due to its inherently substrate-additive-free nature and a high output level.
View Article and Find Full Text PDFJ Phys Chem B
January 2025
Homi Bhabha National Institute, Anushakti Nagar, Mumbai 400094, India.
Introduction of non-DLVO forces by nonionic surfactants brings about fascinating changes in the phase behavior of silica nanosuspensions. We show here that alterations in the interaction and wetting properties of negatively charged silica nanoparticles (Ludox® LS) in the presence of polyethylene oxide-polypropylene oxide-polyethylene oxide-based triblock copolymers called Pluronics lead to the formation of stable o/w Pickering emulsions and interparticle attraction-induced thermoresponsive liquid-liquid phase separations. The results make interesting comparisons with those reported for Ludox® TM nanosuspensions comprising larger silica nanoparticles.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Department of Chemistry, Institute for Advanced Materials and Manufacturing, University of Tennessee, Knoxville, Tennessee 37996, United States.
Porous liquids have traditionally been designed with sterically hindered solvents. Alternatively, recent efforts rely on dispersing microporous frameworks in simpler solvents like water. Here we report a unique strategy to construct macroporous water by selectively incorporating hydrophilicity on the surfaces of hydrophobic hollow carbon spheres (HCS).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!