Exposure of albino rats to high intensity light results in rapid, graded loss of photoreceptors. The hormonal status and age of an animal at the time of exposure affect the severity of light-induced retinal damage. The adrenal axis and pituitary hormones (prolactin) have been demonstrated previously to affect the degree of cell death in the retina. Because circadian rhythms for adrenal and pituitary secretion have been demonstrated in the rat, a series of experiments was undertaken to determine if a diurnal pattern of retinal susceptibility to light damage exists which might be related to endogenous endocrine rhythms. Male Sprague-Dawley rats were exposed to 4 hr of high intensity fluorescent light for 8 consecutive days during different phases of the 14:10 hr light: dark animal room light cycle. Morphometric analysis performed at the light microscopic level 2 weeks after exposure demonstrated a differential susceptibility to light-induced cell death depending upon the period during the light-dark cycle when animals received their daily light exposure. Neuronal cell death was confined to the outer nuclear layer as previously described. The retinas of animals exposed during the middle of the dark period or during the first 5 hr of the light period were significantly more damaged than the retinas of animals exposed during the last 9 hr of the light period. Control groups for the relative amounts of dark-adaptation between groups suggested that the diurnal susceptibility to light damage was not solely dependent upon the degree of dark adaptation. These results demonstrate a diurnal susceptibility of photoreceptors to light-induced cell death.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0014-4835(85)80007-5DOI Listing

Publication Analysis

Top Keywords

cell death
16
diurnal susceptibility
12
light
10
photoreceptors light-induced
8
high intensity
8
susceptibility light
8
light damage
8
light-induced cell
8
retinas animals
8
animals exposed
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!