A finite element model of the bioheat transfer equation has been developed to simulate the temperature distribution in the head of a subhuman primate. Simulations were made of the induction of deep hypothermia and of subsequent hypothermic circulatory arrest (HCA). Simulations of the circulatory arrest phase were performed with different values of surface heat transfer coefficient and tissue metabolic heat generation. Numerical results were compared with experimental data for the same procedure. The simulations indicate the brain cools rapidly to a near isothermal condition in response to an infusion of cold arterial blood. However, extracerebral structures cool much more slowly. The bulk of heat gain by the brain during HCA is due to heat transfer from these warmer extra-cerebral tissues. These results suggest extended cooling by cardiopulmonary bypass (CPB) combined with surface cooling pads should reduce or even prevent the rise of brain temperatures during HCA.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1115/1.3138569 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!