Bacteriorhodopsin functions as an electrogenic, light-driven proton pump in Halobacterium halobium. In cell envelope vesicles, its photocycle kinetics can be correlated with membrane potential. The initial decay rate of the M photocycle intermediate(s) decreases with increasing membrane potential, allowing the construction of a calibration curve. The laser (592.5 nm) was flashed at various time delays following the start of background illumination (592 +/- 25 nm) and transient absorbance changes at 418 nm monitored in cell envelope vesicles. The vesicles were loaded with and suspended in either 3 M NaCl or 3 M KCl buffered with 50 mM HEPES at pH 7.5 and the membrane permeability to protons modified by pretreatment with N,N'-dicyclohexylcarbodiimide. In each case the membrane potential rose with a halftime of approximately 75 ms. The steady-state potential achieved depends on the cation present and the proton permeability of the membrane, i.e., higher potentials are developed in dicyclohexylcarbodiimide treated vesicles or in NaCl media as compared with KCl media. The results are modeled using an irreversible thermodynamics formulation, which assumes a constant driving reaction affinity (Ach) and a variable reaction rate (Jr) for the proton-pumping cycle of bacteriorhodopsin. Additionally, the model includes a voltage-gated, electrogenic Na+/H+ antiporter that is active when vesicles are suspended in NaCl. Estimates for the linear phenomenological coefficients describing the overall proton-pumping cycle (Lr = 3.5 X 10(-11)/mol2/J X g X s), passive cation permeabilities (LHu = 2 X 10(-10), LKu = 2.2 X 10(-10), LNau = 1 X 10(-11)), and the Na+/H+ exchange via the antiporter (Lex = 5 X 10(-11)) have been obtained.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1329396PMC
http://dx.doi.org/10.1016/S0006-3495(85)83829-7DOI Listing

Publication Analysis

Top Keywords

cell envelope
12
envelope vesicles
12
membrane potential
12
halobacterium halobium
8
halobium cell
8
suspended nacl
8
proton-pumping cycle
8
vesicles
6
potential
5
membrane
5

Similar Publications

Errors during cell division lead to aneuploidy, which is associated with genomic instability and cell transformation. In response to aneuploidy, cells activate the tumour suppressor p53 to elicit a surveillance mechanism that halts proliferation and promotes senescence. The molecular sensors that trigger this checkpoint are unclear.

View Article and Find Full Text PDF

Aims: Enterococcus faecium is one of the most important opportunistic pathogens threatening human health worldwide. Resistance to vancomycin (VAN) is increasing at an alarming rate. Resurrecting antibiotics using a combination approach is a promising alternative avenue.

View Article and Find Full Text PDF

Simulation Study of Envelope Wave Electrical Nerve Stimulation Based on a Real Head Model.

Neuroinformatics

January 2025

Shanghai Berry Electronic Technology Co., Ltd., Shanghai, 200000, China.

In recent years, the modulation of brain neural activity by applied electromagnetic fields has become a hot spot in neuroscience research. Transcranial direct current stimulation (tDCS) and transcranial alternating current stimulation (tACS) are two common non-invasive neuromodulation techniques. However, conventional tACS has limited stimulation effects in the deeper parts of the brain.

View Article and Find Full Text PDF

Japanese encephalitis virus (JEV), a neuroinvasive and neurovirulent orthoflavivirus, can be prevented in humans with the SA14-14-2 vaccine, a live-attenuated version derived from the wild-type SA14 strain. To determine the viral factors responsible for the differences in pathogenicity between SA14 and SA14-14-2, we initially established a reverse genetics system that includes a pair of full-length infectious cDNAs for both strains. Using this cDNA pair, we then systematically exchanged genomic regions between SA14 and SA14-14-2 to generate 20 chimeric viruses and evaluated their replication capability in cell culture and their pathogenic potential in mice.

View Article and Find Full Text PDF

The Junín virus (JUNV) is one of the New World arenaviruses that cause severe hemorrhagic fever. Human transferrin receptor 1 (hTfR1) has been identified as the main receptor for JUNV for virus entry into host cells. To date, no treatment has been approved for JUNV.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!