On the basis of the analysis of the described cooling regime of biological objects during low temperature preservation it is suggested that an optimal regime should have non-linear dependence of the rate of temperature change in time. By approximation of several experimental cooling regimes it is found that the exponential description of this process is the most correct. Advantages of using the exponential cooling regime instead of the linear ones during their optimization are grounded. The theoretical premises of the exponential cooling regime realization are described.
Download full-text PDF |
Source |
---|
Appl Spectrosc
January 2025
Department of Chemistry, University of Utah, Salt Lake City, Utah, USA.
Crystallization from the melt is a critical process governing the properties of semi-crystalline polymeric materials. While structural analyses of melting and crystallization transitions in bulk polymers have been widely reported, in contrast, those in thin polymer films on solid supports have been underexplored. Herein, in situ Raman microscopy and self-modeling curve resolution (SMCR) analysis are applied to investigate the temperature-dependent structural changes in poly(ethylene oxide) (PEO) films during melting and crystallization phase transitions.
View Article and Find Full Text PDFJ Chem Phys
January 2025
Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, USA.
Nucleation and growth are studied in a system that undergoes diffusion-controlled condensation under gradual changes in parameters, such as cooling. It is demonstrated that when the Gibbs-Thompson effect becomes negligible, the system falls into a universal regime. i.
View Article and Find Full Text PDFRev Sci Instrum
January 2025
Indian Institute of Science Education and Research, Thiruvananthapuram, Kerala 695551, India.
Quantum technology exploits fragile quantum electronic phenomena whose energy scales demand ultra-low electron temperature operation. The lack of electron-phonon coupling at cryogenic temperatures makes cooling the electrons down to a few tens of millikelvin a non-trivial task, requiring extensive efforts on thermalization and filtering high-frequency noise. Existing techniques employ bulky and heavy cryogenic metal-powder filters, which prove ineffective at sub-GHz frequency regimes and unsuitable for high-density quantum circuits such as spin qubits.
View Article and Find Full Text PDFNanoscale
January 2025
Department of Chemistry, Faculty of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.
We report photodissociation processes and spectral measurements upon photoabsorption of size-selected cationic silver clusters, Ag, stored in an ion trap. The experiment shows that small clusters ( ≲ 15) dissociate upon one-photon absorption, whereas larger ones require multiple photons up to five in the present study. The emergence of multi-photon processes is attributed to collisional cooling in the presence of a buffer helium gas in the trap, which competes with size-dependent dissociation rates.
View Article and Find Full Text PDFPhys Rev Lett
December 2024
Dipartimento di Fisica e Astronomia, Università degli Studi di Padova, Via Marzolo 8, 35131 Padova, Italy.
We revisit supernova (SN) bounds on a hidden sector consisting of millicharged particles χ and a massless dark photon. Unless the self-coupling is fine-tuned to be small, rather than exiting the SN core as a gas, the particles form a relativistic fluid and subsequent dark QED fireball, streaming out against the drag due to the interaction with matter. Novel bounds due to excessive energy deposition in the mantle of low-energy supernovae can be obtained.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!