2-Methyl-4-nitro-1-(4-nitrophenyl)imidazole (nitrefazole) is a drug which causes a strong and long lasting inhibition of aldehyde dehydrogenase, an enzyme involved in the metabolism of alcohol. The synthesis of this compound as well as that of the isomeric 5-nitro analogue are described. It can be shown by means of detailed 1H- and 13C-NMR studies of both isomers and some other structurally related compounds that the nitro group in nitrefazole is in position 4 of the imidazole ring, whereas the other pharmacologically active nitroimidazoles like metronidazole are mainly substituted in position 5 (or in exceptional cases in position 2).

Download full-text PDF

Source

Publication Analysis

Top Keywords

aldehyde dehydrogenase
8
[nitrefazole 4-nitroimidazole
4
4-nitroimidazole derivative
4
derivative marked
4
marked inhibitory
4
inhibitory aldehyde
4
dehydrogenase synthesis
4
synthesis structural
4
structural assignment]
4
assignment] 2-methyl-4-nitro-1-4-nitrophenylimidazole
4

Similar Publications

The GRAS transcription factor PtrPAT1 of functions in cold tolerance and modulates glycine betaine content by regulating the -like gene.

Hortic Res

January 2025

National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China.

GRAS, termed after gibberellic acid insensitive (GAI), RGA (repressor of GA1), and SCR (scarecrow), is a plant-specific transcription factor crucial for plant development and stress response. However, understanding of the functions played by the GRAS members and their target genes in citrus is limited. In this study, we identified a cold stress-responsive GRAS gene from , designated as PtrPAT1, by yeast one-hybrid library screening using the promoter of , a betaine aldehyde dehydrogenase (BADH)-like gene.

View Article and Find Full Text PDF

Stereocaulon alpinum has been found to have potential pharmaceutical properties due to the presence of secondary metabolites such as usnic acid, atranorin, and lobaric acid (LA) which have anticancer activity. On the other hand, the effect of LA on the stemness potential of colorectal cancer (CRC) cells remains unexplored, and has not yet been thoroughly investigated. In this study, we examined the inhibitory activity of LA from Stereocaulon alpinum against the stemness potential of CRC cells and investigated the possible underlying mechanisms.

View Article and Find Full Text PDF

Targeting aldehyde dehydrogenase ALDH3A1 increases ferroptosis vulnerability in squamous cancer.

Oncogene

January 2025

Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China.

Ferroptosis is a unique modality of regulated cell death induced by excessive lipid peroxidation, playing a crucial role in tumor suppression and providing potential therapeutic strategy for cancer treatment. Here, we find that aldehyde dehydrogenase-ALDH3A1 tightly links to ferroptosis in squamous cell carcinomas (SCCs). Functional assays demonstrate the enzymatic activity-dependent regulation of ALDH3A1 in protecting SCC cells against ferroptosis through catalyzing aldehydes and mitigating lipid peroxidation.

View Article and Find Full Text PDF

MMP2 regulates proliferation and differentiation in chicken primary myoblasts, and RNA-seq screens for key genes.

Gene

January 2025

Jiangxi Provincial Key Laboratory of Poultry Genetic Improvement, Nanchang 330032 China. Electronic address:

The growth and development of chicken skeletal muscle directly affects chicken meat production, which is very important for broiler industry. Matrix metallopeptidase 2 (MMP2) exists in skeletal muscle. However, the underlying regulating of MMP2 remain unknown.

View Article and Find Full Text PDF

Backgrounds: Memory and emotion are especially vulnerable to psychiatric disorders such as post-traumatic stress disorder (PTSD), which is linked to disruptions in serotonin (5-HT) metabolism. Over 90% of the 5-HT precursor tryptophan (Trp) is metabolized via the Trp-kynurenine (KYN) metabolic pathway, which generates a variety of bioactive molecules. Dysregulation of KYN metabolism, particularly low levels of kynurenic acid (KYNA), appears to be linked to neuropsychiatric disorders.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!