The bypass of lesions in DNA with insertion of nucleotides opposite damaged bases has been studied as a model for mutagenesis in an in vitro system. Lesions introduced by dimethyl sulfate at adenines and by ultraviolet light at pyrimidine dimers act as termination sites on both double- and single-stranded DNA templates. Base selection opposite noninformational lesions is, in part, a property of the polymerases: different polymerases have different selectivities although all polymerases tested seem to prefer purines. The ability to insert "incorrect" bases is determined in part by the sequence 5' to the lesion on the template strand. The hypothesis that damaged purines tend to result in transversions can be applied to published data on activation of the c-ras oncogene.

Download full-text PDF

Source

Publication Analysis

Top Keywords

vitro models
4
models mutagenesis
4
mutagenesis bypass
4
bypass lesions
4
lesions dna
4
dna insertion
4
insertion nucleotides
4
nucleotides opposite
4
opposite damaged
4
damaged bases
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!