Pronounced destabilization of liver lysosomal membranes has been revealed in rats in conditions of 30-day-long alcohol intoxication. Noticeable fractional changes in phospholipid composition of lysosomal membranes have been found. Significant increase in lysophosphatidylethanolamine and lysophosphatidylcholine levels have been observed. Type A2 phospholipase activity was found in lysosomal fractions, with the enzyme activity Ca2+-dependent, optimal at pH 8 and increasing many-fold following alcohol intoxication. The changes in lysosomal membrane phospholipids appear to be related to phospholipase A2 activation.

Download full-text PDF

Source

Publication Analysis

Top Keywords

changes lysosomal
8
lysosomal membrane
8
lysosomal membranes
8
alcohol intoxication
8
lysosomal
5
[role phospholipids
4
phospholipids changes
4
membrane stability
4
stability conditions
4
conditions chronic
4

Similar Publications

Spontaneous intoxication by was diagnosed in a flock of 300 sheep in Jujuy province, northwestern Argentina, that grazed an area heavily invaded by this plant. The main clinical signs were intention tremors, ataxia, and progressive loss of condition. Autopsy of 2 affected animals revealed loss of body condition.

View Article and Find Full Text PDF

Mechanisms of Low Temperature-Induced Growth Hormone Resistance via TRPA1 Channel Activation in Male Nile Tilapia.

Endocrinology

January 2025

Key Laboratory of Bio-resources and Eco-environment of the Ministry of Education, College of Life Sciences, 610065, Sichuan University, Chengdu, P.R. China.

Low temperatures significantly impact growth in ectothermic vertebrates, though the underlying mechanisms remain poorly understood. This study investigates the role of transient receptor potential ankyrin 1 (TRPA1) channels in mediating low temperature effects on growth performance and growth hormone (GH) resistance in Nile tilapia (Oreochromis niloticus). Prolonged exposure to low temperature (16°C for 35 days) impaired growth performance and induced GH resistance, characterized by elevated serum GH levels and decreased insulin-like growth factor-1 (IGF-1) levels.

View Article and Find Full Text PDF

Pathological cardiac remodeling is a maladaptive response that leads to changes in the size, structure, and function of the heart. These changes occur due to an acute or chronic stress on the heart and involve a complex interplay of hemodynamic, neurohormonal and molecular factors. As a critical regulator of cell growth, protein synthesis and autophagy mechanistic target of rapamycin complex 1 (mTORC1) is an important mediator of pathological cardiac remodeling.

View Article and Find Full Text PDF

Intratumoral delivery of Mitomycin C using bio-responsive Gellan Gum Nanogel: In-vitro evaluation and enhanced chemotherapeutic efficacy.

Int J Biol Macromol

January 2025

Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India. Electronic address:

Intratumoral drug delivery systems hold immense promise in overcoming the limitations of conventional IV chemotherapy, particularly in enhancing therapeutic efficacy and minimizing systemic side effects. In this study, we introduce a novel redox-responsive intratumoral nanogel system that combines the biocompatibility of natural polysaccharides with the tailored properties of synthetic polymers. The nanogel features a unique cross-linked architecture incorporating redox-sensitive segments, designed to leverage the elevated glutathione levels in the tumor microenvironment for controlled drug release.

View Article and Find Full Text PDF

Autophagic flux measurement: Cargo degradation versus generation of degradation products.

Curr Opin Cell Biol

January 2025

Department of Biochemistry and Molecular Biology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan. Electronic address:

Autophagy is the cellular processes that transport cytoplasmic components to lysosomes for degradation. It plays essential physiological roles, including in adaptation to environmental changes such as starvation and maintaining intracellular quality control. Recently, its links to aging and disease have garnered substantial attention.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!