We have demonstrated that glucocorticoids induce in DDT1 MF-2 cells by a glucocorticoid mediated mechanism the synthesis of a methionine-cysteine rich protein of 29 000 Mr (p29). Induction of p29 is not observed in DDT1 MF-2 GR glucocorticoid resistant variants which have only 7% of glucocorticoid receptor site per cell compared to wild type cells. Increased synthesis of p29 is specific to glucocorticoids since neither androgens, estrogens, progesterone nor the glucocorticoid antagonist dexamethasone mesylate are effective inducers. Stimulation of p29 synthesis in wild type cells is observed at 10(-10) M triamcinolone acetonide, reaching a maximum at a concentration of 1 X 10(-8) M. The induction of p29 is not a function of glucocorticoid arrest of DDT1 MF-2 cells since DDT1 MF-2 cells promoted to re-enter the cell cycle by 50 ng/ml platelet derived growth factor (PDGF) continue synthesis of p29. Finally, increased levels of p29 translation products are observed in cell free translation assays carried out utilizing poly A+ RNA transcripts isolated from glucocorticoid treated cells. These data suggest that the glucocorticoid stimulation of p29 synthesis is a transcriptional and/or RNA processing event controlled by glucocorticoid receptor complexes.

Download full-text PDF

Source
http://dx.doi.org/10.1007/BF00219391DOI Listing

Publication Analysis

Top Keywords

ddt1 mf-2
24
mf-2 cells
12
glucocorticoid
9
glucocorticoids induce
8
cells ddt1
8
mf-2 glucocorticoid
8
glucocorticoid resistant
8
p29
8
induction p29
8
glucocorticoid receptor
8

Similar Publications

Equine arteritis virus (EAV) is an Alphaarterivirus (family Arteriviridae, order Nidovirales) that frequently causes an influenza-like illness in adult horses, but can also cause the abortions in mares and death of newborn foals. Once primary infection has been established, EAV can persist in the reproductive tract of some stallions. However, the mechanisms enabling this persistence, which depends on testosterone, remain largely unknown.

View Article and Find Full Text PDF

The phosphoinositide-dependent protein kinase 1 inhibitor, UCN-01, induces fragmentation: possible role of metalloproteinases.

Eur J Pharmacol

October 2014

Departamento de Biología Celular y Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Apartado Postal 70-248, México DF 04510, México. Electronic address:

Phosphoinositide-dependent protein kinase 1 (PDK1) is a key enzyme, master regulator of cellular proliferation and metabolism; it is considered a key target for pharmacological intervention. Using membranes obtained from DDT1 MF-2 cells, phospho-PDK1 was identified by Western blotting, as two major protein bands of Mr 58-68 kDa. Cell incubation with the PDK1 inhibitor, UCN-01, induced a time- and concentration-dependent decrease in the amount of phospho-PDK1 with a concomitant appearance of a ≈42 kDa phosphorylated fragment.

View Article and Find Full Text PDF

A concise synthesis of a series of N(6)-substituted adenosines with bicyclo[3.2.1]octan-6-yl and polycyclic N(6)-substituents has been developed.

View Article and Find Full Text PDF

DDT₁ MF-2 hamster ductus deferens cells are resistant to hypothermia due to serotonin secretion from secretory vesicles and subsequent cystathionine beta synthase (CBS) mediated formation of H₂S. We investigated whether the mechanism promoting resistance to hypothermia may be translationally induced in cells vulnerable to cold storage. Thus, VMAT-1 (vesicular monoamino transferase) and TPH-1 (tryptophan hydroxylase) were co-transfected in rat aortic smooth muscle cells (SMAC) and kidney tissue to create a serotonin-vesicular phenotype (named VTSMAC and VTkidney, respectively).

View Article and Find Full Text PDF

Exposure of cells to adenosine receptor (AR) agonists leads to receptor uncoupling from G proteins and downregulation of the A(1)AR. The receptor levels on the cell surface generally recover on withdrawal of the agonist, because of either translocation of the sequestered A(1)AR back to plasma membrane or de novo synthesis of A(1)AR. To examine the mechanism(s) underlying A(1)AR downregulation and recovery, we treated ductus deferens tumor (DDT(1) MF-2) cells with the agonist R-phenylisopropyladenosine (R-PIA) and showed a decrease in membrane A(1)AR levels by 24 h, which was associated with an unexpected 11-fold increase in A(1)AR mRNA.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!