The authors present the data of the histological structure of the dog heart tissue adjacent to the electrode tip following a ten-month period of electrical stimulation by means of an implanted graphited porous endocardial electrode and a pacemaker of the alternating polarity. The reason for performing such an histological investigation was an extremely low chronic threshold of heart electrostimulation, amounting to 0.35 V with the stimulus duration 1 ms. The structural features of the tissues as viewed by the authors, consist in (1) the thinning of the fibrous capsule of the electrode tip; (2) the presence of a zone adjacent to the electrode, with this zone being rich in the liquid component of the intercellular substance; (3) the formation of a conspicuous radix of the fibrous capsule, penetrating into the depth of the myocardium.
Download full-text PDF |
Source |
---|
Physiol Meas
January 2025
Chair of Measurements and Sensor Technology, Technische Universitat Chemnitz, Reichenhainerstrasse 70, Chemnitz, 09111, GERMANY.
Objective: Electrical Impedance Tomography (EIT) is a non-invasive technique used for lung imaging. A significant challenge in EIT is reconstructing images of deeper thoracic regions due to the low sensitivity of boundary voltages to internal conductivity variations. The current injection pattern is decisive as it influences the current path, boundary voltages, and their sensitivity to tissue changes.
View Article and Find Full Text PDFPhysiol Meas
January 2025
Chair of Measurements and Sensor Technology, Technische Universitat Chemnitz, Reichenhainerstrasse 70, Chemnitz, 09111, GERMANY.
Objective: Electrical Impedance Tomography (EIT) is a non-invasive technique used for lung imaging. A significant challenge in EIT is reconstructing images of deeper thoracic regions due to the low sensitivity of boundary voltages to internal conductivity variations. The current injection pattern is decisive as it influences the current path, boundary voltages, and their sensitivity to tissue changes.
View Article and Find Full Text PDFNeurourol Urodyn
January 2025
Department of Surgery, Division of Urology, Virginia Commonwealth University Health System, Richmond, Virginia, USA.
Introduction And Objective: Observable autonomous rhythmic changes in intravesical pressure, termed bladder wall micromotion, is a phenomenon that has been linked to urinary urgency, the key symptom in overactive bladder (OAB). However, the mechanism through which micromotion drives urinary urgency is poorly understood. In addition, micromotion is inherently difficult to study in human urodynamics due to challenges distinguishing it from normal cyclic physiologic processes such as pulse rate, breathing, rectal contractions, and ureteral jetting.
View Article and Find Full Text PDFRapid detection of pork quality has garnered increasing attention due to its status as one of the most widely consumed meats in the world. This study developed an electrochemical impedance combined with sensory evaluation method to achieve real-time imaging and quality assessment of pork. The optimal parameters for pork detection were determined through system performance tests and a Design of Experiment, which included the use of an adjacent excitation pattern, an excitation current of 15 mA at 10 kHz, a detector diameter of 5 cm, and stainless-steel electrodes embedded in the pork.
View Article and Find Full Text PDFSensors (Basel)
December 2024
Department of Applied Physics, National Defense Academy, Hashirimizu 1-10-20, Yokosuka 239-0802, Kanagawa, Japan.
Dielectrophoresis (DEP) cell separation technology is an effective means of separating target cells which are only marginally present in a wide variety of cells. To develop highly efficient cell separation devices, detailed analysis of the nonuniform electric field's intensity distribution within the device is needed, as it affects separation performance. Here we analytically expressed the distributions of the electric field and DEP force in a parallel-plate cell separation DEP device by employing electrostatic analysis through the Fourier series method.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!