The nature of interactions between cells migrating through tissues and their structural surroundings are largely unknown. We have therefore examined the ultrastructural relationship between L5222 rat leukemia cells, moving through the loose connective tissue of the mesentery, and components of the extracellular matrix (ECM). Ultrathin tissue sections, fixed in the presence of ruthenium hexammine trichloride (RHT), revealed the following: Constitutents of fibrillar and nonfibrillar elements of the ECM are in contact with the plasma membrane of L5222 cells. Linear nonfibrillar ECM elements contact the plasma membrane at point-like sites, often associated with root-like structures present within the submembraneous microfilament mesh. Aggregates of ECM material are connected to patch-like cell membrane sites, associated with a condensed, plate-like part of the microfilament mesh. Point-like and patch-like contacts are more numerous at the anterior part of polarized migrating L5222 cells than on the posterior end. In round resting leukemia cells they are evenly distributed around the cell periphery. We suggest that the ECM-cell membrane contacts represent tissue adhesion sites. We therefore hypothesize that in migrating cells a coordinate interaction occurs between the contact sites and the continuous microfilament meshwork which results in a simultaneous backward movement of ECM-membrane contacts on the cell body and in a net forward movement of the whole cell. Since Dembo et al. (1981) present a similar mechanism for in vitro locomotion of granulocytes, we assume that blood cell locomotion in vivo and in vitro depends on similar molecular mechanisms: force generation by the cell, transmembraneous linkage between cytoskeletal and ECM elements, and membrane fluidity. The major difference in blood cell locomotion through a three-dimensional tissue or on a plane substratum would then be given by the distribution of contact sites, occurring around the cell periphery or limited to the ventral cell surface, respectively.

Download full-text PDF

Source
http://dx.doi.org/10.1016/0309-1651(85)90153-5DOI Listing

Publication Analysis

Top Keywords

leukemia cells
12
cell
9
migrating l5222
8
l5222 rat
8
rat leukemia
8
extracellular matrix
8
contact plasma
8
plasma membrane
8
l5222 cells
8
ecm elements
8

Similar Publications

The histone demethylase KDM5C enhances the sensitivity of acute myeloid leukemia cells to lenalidomide by stabilizing cereblon.

Cell Mol Biol Lett

January 2025

Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Key Laboratory of Drug Research for Prevention and Treatment of Hyperlipidemic Diseases, Soochow University, 199 Ren'ai Road, Suzhou, 215123, Jiangsu, China.

Background: The protein cereblon (CRBN) mediates the antileukemia effect of lenalidomide (Len). Len binds to CRBN, recruits IKZF1/IKZF3, and promotes their ubiquitination and degradation, through which Len exhibits its antileukemia and antimyeloma activity. Therefore, the protein level of CRBN might affect the antiproliferative effect of Len.

View Article and Find Full Text PDF

ETV6::RUNX1 is the most common fusion gene in childhood acute lymphoblastic leukemia (ALL) associated with favorable prognosis, but the optimal therapy for this subtype remains unclear. Profiling the genomic and pharmacological landscape of 194 pediatric ETV6::RUNX1 ALL cases, we uncover two transcriptomic clusters, C1 (61%) and C2 (39%). Compared to C1, the C2 subtype features higher white blood cell counts and younger age at diagnosis, as well as better early treatment responses.

View Article and Find Full Text PDF

The common murine retroviral integration site activating Hhex marks a distal regulatory enhancer co-opted in human Early T-cell precursor leukemia.

J Biol Chem

January 2025

Indiana University School of Medicine, Indianapolis, Indiana; IU Simon Comprehensive Cancer Center, Indianapolis, Indiana; R.L. Roudebush Indianapolis VA Medical Center, Indianapolis, Indiana. Electronic address:

The Hhex gene encodes a transcription factor that is important for both embryonic and post-natal development, especially of hematopoietic tissues. Hhex is one of the most common sites of retroviral integration in mouse models. We found the most common integrations in AKXD (recombinant inbred strains) T-ALLs occur 57-61kb 3' of Hhex and activate Hhex gene expression.

View Article and Find Full Text PDF

ClpXP is a two-component mitochondrial matrix protease. The caseinolytic mitochondrial matrix peptidase chaperone subunit X (ClpX) recognizes and translocates protein substrates into the degradation chamber of the caseinolytic protease P (ClpP) for proteolysis. ClpXP degrades damaged respiratory chain proteins and is necessary for cancer cell survival.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!