Genomic DNA of intact colonic mucosa obtained from a female patient suffering colonic cancer revealed amplified nucleotide sequences (multiple copies) related to viral myc oncogene. The study failed to detect amplification in tumor. Causation and pathways of the event are discussed.

Download full-text PDF

Source

Publication Analysis

Top Keywords

nucleotide sequences
8
viral myc
8
myc oncogene
8
colonic mucosa
8
[amplification nucleotide
4
sequences homologous
4
homologous viral
4
oncogene dna
4
dna colonic
4
mucosa patient
4

Similar Publications

Decapod crustaceans regulate molting through steroid molting hormones, ecdysteroids, synthesized by the molting gland (Y-organ, YO). Molt-inhibiting hormone (MIH), a neuropeptide synthesized and secreted by the eyestalk ganglia, negatively regulates YO ecdysteroidogenesis. MIH signaling is mediated by cyclic nucleotide second messengers.

View Article and Find Full Text PDF

: Mitochondrial signatures based analysis of an emerging public health threat in India.

New Microbes New Infect

February 2025

Department of Veterinary Public Health and Epidemiology, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, Haryana, 125004, India.

Background: is a zoonotic tapeworm, commonly known as Asian It is an emerging sister species of with pigs as intermediate hosts. The present study aimed at genetic characterization and population structure analysis of metacestodes in slaughtered pigs in Haryana, north India.

Methods: In total, the vital organs of 253 slaughtered pigs were screened for the presence of metacestodes.

View Article and Find Full Text PDF

Subtype-specific human endogenous retrovirus K102 envelope protein is a novel serum immunosuppressive biomarker of cancer.

Front Immunol

January 2025

Department of Hematology and Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.

Immune dysfunction is one of the hallmarks of cancer and plays critical roles in immunotherapy resistance, but there is no serum biomarker that can be used to evaluate immune-dysfunction status of cancer patients. Here, we identified subtype-specific human endogenous retrovirus K102 envelope (HERV-K102-Env) with immunosuppressive activity in circulating blood as a novel serum immunosuppressive biomarker of cancer. We first generated monoclonal antibodies against K102-Env with high sensitivity and specificity, and we developed an ELISA assay to detect serum K102-Env.

View Article and Find Full Text PDF

Introduction: The envelope proteins syncytin-1 and pHERV-W from the Human Endogenous Retroviral family 'W' (HERV-W) have been identified as potential risk factors in multiple sclerosis (MS). This study aims to evaluate both humoral and cell-mediated immune response to antigenic peptides derived from these proteins across different clinical forms and inflammatory phases of MS.

Methods: Indirect enzyme-linked immunosorbent assay (ELISA) was employed to measure immunoglobulin G (IgG) responses to syncytin-1 and pHERV-W peptides in MS patients.

View Article and Find Full Text PDF

Large-bodied pelagic sharks are key regulators of oceanic ecosystem stability, but highly impacted by severe overfishing. One such species, the shortfin mako shark (), a globally widespread, highly migratory predator, has undergone dramatic population reductions and is now Endangered (IUCN Red List), with Atlantic Ocean mako sharks in particular assessed by fishery managers as overfished and in need of urgent, improved management attention. Genomic-scale population assessments for this apex predator species have not been previously available to inform management planning; thus, we investigated the population genetics of mako sharks across the Atlantic using a bi-organelle genomics approach.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!