The solution conformation of short ragweed allergen Ra5, a protein of 45 amino acid residues cross-linked with four disulfide bridges, has been investigated by 1H NMR spectroscopy at 500 MHz. The aromatic region, which contains resonances from three tyrosines and two tryptophans, has been partially assigned. Two tyrosines titrate with a pK of 10.2; a third tyrosine is buried under the tryptophan resonances, and its pK could not be determined. The two tryptophans reside in different microenvironments; the resonances of one are very similar to those found in random coil structures while the other has dramatically shifted peaks. Nuclear Overhauser effect (NOE) difference spectroscopy is used to define two distinct spin-diffusion systems for the aromatic residues and to further identify several methyl-containing amino acids involved in these systems. Assignments in the methyl region are based on selective decoupling, chemical shifts, NOE difference spectra, and 2-D J-resolved and 2-D J-correlated spectroscopy (COSY) methodology. A unique ring-current-shifted methyl doublet in the Ra5 spectrum titrates into the bulk methyl region with a pK of 10.2. Examination of the COSY map suggests that this resonance belongs to either leucine-1 or isoleucine-38. Chemical removal of the N-terminal leucine did not affect the ring-current-shifted methyl. Therefore, this unique resonance has been assigned to the methyl of isoleucine-38.(ABSTRACT TRUNCATED AT 250 WORDS)
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/bi00332a023 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!