The chemical composition and microbial mutagenicity of aerosols generated by nebulizing two coal oils (solvent refined coal [SRC]-I process solvent [PS] and SRC-II heavy distillate) were found to vary with particle size. Significant quantities of the most volatile components of PS were also present as vapors. Evaporation and condensation processes in oil deposited on surfaces as well as in the aerosol are believed to be important in determining the observed composition changes. Complete physical and chemical characterization of the aerosol should be included in inhalation studies of complex materials since the animals may be exposed to material of quite different composition than that placed in the generator initially.

Download full-text PDF

Source
http://dx.doi.org/10.1080/15298668591394338DOI Listing

Publication Analysis

Top Keywords

particle size
8
aerosols generated
8
variation composition
4
composition particle
4
size coal
4
coal liquid
4
liquid aerosols
4
generated inhalation
4
inhalation toxicology
4
toxicology studies
4

Similar Publications

Emulsion Polymerization of Styrene to Polystyrene Nanoparticles with Self-Emulsifying Nanodroplets as Nucleus.

Langmuir

January 2025

Research Center for Water Resources and Interface Science, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China.

The mechanism of the emulsion polymerization of styrene to polystyrene nanoparticles (PSNPs) remains a subject of debate. Herein, a series of reaction parameters with different surfactant concentrations, monomer contents, temperatures, and equilibration times were investigated to understand the formation mechanism of PSNPs, which demonstrate a correlation between the properties of PSNPs and the mesostructure of the premix. Cooling the model systems with self-emulsifying nanodroplets (SENDs) in the early reaction stages resulted in the hollow polystyrene spheres (H-PSSs), ruptured PSNPs, and dandelion-like PSNPs, further indicating that the oil nanodroplets are the key sites for the formation of PSNPs.

View Article and Find Full Text PDF

The actin cytoskeleton regulates danger-associated molecular pattern signaling and PEP1 RECEPTOR1 internalization.

Plant Physiol

January 2025

State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China.

In plants, cytoskeletal proteins assemble into dynamic polymers that play numerous roles in diverse fundamental cellular processes, including endocytosis, vesicle trafficking, and the spatial distribution of organelles and protein complexes. Plant elicitor peptides (Peps) are damage/danger-associated molecular patterns (DAMPs) that are perceived by the receptor-like kinases PEP RECEPTOR 1 (PEPR1) and PEPR2 to enhance innate immunity and inhibit root growth in Arabidopsis (Arabidopsis thaliana). To date, however, there is little evidence that the actin cytoskeleton of the host cell participates in DAMP-induced innate immunity.

View Article and Find Full Text PDF

The average annual water availability worldwide is approximately 1,386 trillion cubic hectometers (hm), of which 97.5% is saltwater and only 2.5% is freshwater.

View Article and Find Full Text PDF

Facile phase selective synthesis of copper antimony sulphide (CAS) nanostructures is important because of their tunable photoconductive and electrochemical properties. In this study, off-stoichiometric famatinite phase CAS (CAS) quasi-spherical and quasi-hexagonal colloidal nanostructures (including nanosheets) of sizes, 2.4-18.

View Article and Find Full Text PDF

The improved growth performance of calves at weaning results from an effective pre-weaning feeding strategy. The type and pasteurization process of liquid feed are among the most variable feeding practices affecting calves' growth and health. In previous studies that compared waste milk (WM) vs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!