Rates of actin polymerization and of contractility of myocardial glycerinated fibers (the myofibrillar contractile system) were found to be decreased in patients with myocardium infarction and in experimental heart ischemia. The phenomena were noted within the earliest period under study (I hr after development of ischemia). Causes of the decrease in the rates of actin polymerization and of the myofibrillar contractility did not involve hypoxia and acidosis. They were observed in non-ischemic and non-infarcted zones of left ventricles and in non-impaired right ventricles. The data obtained suggest that alterations in physico-chemical properties of actin (the main protein of thin myofilament) leading the decrease in the contractile functions, were responsible for acute failure of heart muscle in ischemia and infarction.

Download full-text PDF

Source

Publication Analysis

Top Keywords

infarction experimental
8
rates actin
8
actin polymerization
8
[polymerization straub's
4
actin
4
straub's actin
4
actin patients
4
patients myocardial
4
myocardial infarction
4
experimental occlusion
4

Similar Publications

Importance: The net clinical effect of early vs later direct oral anticoagulant (DOAC) initiation after atrial fibrillation-associated ischemic stroke is unclear.

Objective: To investigate whether early DOAC treatment is associated with a net clinical benefit (NCB).

Design, Setting, And Participants: This was a post hoc analysis of the Early Versus Late Initiation of Direct Oral Anticoagulants in Post-Ischaemic Stroke Patients With Atrial Fibrillation (ELAN) open-label randomized clinical trial conducted across 103 sites in 15 countries in Europe, the Middle East, and Asia between November 6, 2017, and September 12, 2022, with a 90-day follow-up.

View Article and Find Full Text PDF

Introduction: The infarcted heart is energetically compromised exhibiting a deficient production of adenosine triphosphate (ATP) and the ensuing impaired contractile function. Short-term blockade of the protein S100A9 improves cardiac performance in mice after myocardial infarction (MI). The implications upon ATP production during this process are not known.

View Article and Find Full Text PDF

Background: Acute ischemic stroke treatment typically involves tissue-type plasminogen activator (tPA) or tenecteplase, but about 50% of patients do not achieve successful reperfusion. The causes of tPA resistance, influenced by thrombus composition and timing, are not fully clear. Neutrophil extracellular traps (NETs), associated with poor outcomes and reperfusion resistance, contribute to thrombosis.

View Article and Find Full Text PDF

Purpose: This study aimed to assess the protective effect of a clinical dose esketamine on cerebral ischemia/reperfusion (I/R) injury and to reveal the potential mechanisms associated with microglial polarization and autophagy.

Methods: Experimental cerebral ischemia was induced by middle cerebral artery occlusion (MCAO) in adult rats and simulated by oxygen-glucose deprivation (OGD) in BV-2 microglial cells. Neurological and sensorimotor function, cerebral infarct volume, histopathological changes, mitochondrial morphological changes, and apoptosis of ischemic brain tissues were assessed in the presence or absence of esketamine and the autophagy inducer rapamycin.

View Article and Find Full Text PDF

Assembly of ceria-Nrf2 nanoparticles as macrophage-targeting ROS scavengers protects against myocardial infarction.

Front Pharmacol

January 2025

The Sixth Affiliated Hospital, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target and Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, The Fifth Affiliated Hospital, Guangzhou, China.

Myocardial infarction (MI) is a leading cause of morbidity and mortality worldwide, and mitigating oxidative stress is crucial in managing MI. Nuclear factor erythroid 2-related factor 2 (Nrf2) plays a critical role in combating oxidative stress and facilitating cardiac remodeling post-MI. Here, we engineered Cerium oxide (CeO) nanoparticle-guided assemblies of ceria/Nrf2 nanocomposites to deliver Nrf2 plasmids.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!