The purposes of this study were to demonstrate the effects of infrared laser radiation on the sensory nerve conduction of a specified peripheral nerve in man and determine temperature changes in the tissue surrounding the treated nerve. Twenty healthy adults were divided into three groups: control (n = 5); experimental (n = 10), infrared laser radiation at 20 sec/cm2; and experimental (n = 5), infrared laser radiation treatment at 120 sec/cm2. Antidromic sensory nerve conduction studies were performed on the superficial radial nerve of each subject's right forearm. The infrared laser radiation was applied at a fixed intensity for five 1-cm2 segments. Latency, amplitude, and temperature measurements were recorded pretest; posttest; and posttest intervals of 1, 3, 5, 10, and 15 minutes. An analysis of variance with repeated measures was used to examine the data. No significant change was noted in the distal sensory latency or amplitude of the evoked sensory potential in either experimental or control groups as a result of the applications of the infrared laser radiation treatment. This study demonstrates that infrared laser used at clinically applied intensities does not alter conduction of sensory nerves nor does it elevate the subcutaneous temperature.

Download full-text PDF

Source
http://dx.doi.org/10.1093/ptj/65.8.1184DOI Listing

Publication Analysis

Top Keywords

infrared laser
28
laser radiation
20
nerve conduction
12
superficial radial
8
radial nerve
8
sensory nerve
8
experimental infrared
8
radiation treatment
8
latency amplitude
8
infrared
7

Similar Publications

Nanocomposites of epoxy with FeO featuring dynamic disulfide bonds were fabricated. To facilitate the dispersion of FeO nanoparticles, we synthesized poly(ε-caprolactone)-grafted FeO nanoparticles, which were then incorporated into epoxy to generate robust interfacial interactions between epoxy and the inorganic nanoparticles. Through this approach, a fine dispersion of the inorganic nanoparticles in the epoxy matrix was successfully obtained.

View Article and Find Full Text PDF

Synergistic photodynamic/photothermal therapy (PDT/PTT) can be used to target cancer cells by locally generating singlet oxygen species or increasing temperature under laser irradiation. This approach offers higher tumor ablation efficiency, lower therapeutic dose requirements, and reduced side effects compared to single treatment approaches. However, the therapeutic efficiency of PDT/PTT is still limited by the low oxygen levels within the solid tumors caused by abnormal vasculature and altered cancer cell metabolism.

View Article and Find Full Text PDF

Rheumatoid arthritis (RA) is a common chronic systemic autoimmune disease that often results in irreversible joint erosion and disability. Methotrexate (MTX) is the first-line drug against RA, but the significant side effects of long-term administration limit its use. Therefore, new therapeutic strategies are needed for treating RA.

View Article and Find Full Text PDF

Innovative Infrared Spectroscopic Technologies for the Prediction of Deoxynivalenol in Wheat.

ACS Food Sci Technol

January 2025

Institute of Analytical and Bioanalytical Chemistry, Ulm University, Albert-Einstein-Allee 11, Ulm 89075, Germany.

Mycotoxin contamination in cereals is a global food safety concern. One of the most common mycotoxins in grains is deoxynivalenol (DON), a secondary metabolite produced by the fungi and . Exposure to DON can lead to adverse health effects in both humans and animals including vomiting, dizziness, and fever.

View Article and Find Full Text PDF

Sum-frequency generation (SFG) enables the coherent upconversion of electromagnetic signals and plays a significant role in mid-infrared vibrational spectroscopy for molecular analysis. Recent research indicates that plasmonic nanocavities, which confine light to extremely small volumes, can facilitate the detection of vibrational SFG signals from individual molecules by leveraging surface-enhanced Raman scattering combined with mid-infrared laser excitation. In this article, we compute the degree of second order coherence ( (0)) of the upconverted mid-infrared field under realistic parameters and accounting for the anharmonic potential that characterizes vibrational modes of individual molecules.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!