Velocity sedimentation analysis of acetylcholinesterase (AChE) molecular forms was performed separately in endplate-rich and endplate-free regions of the diaphragm muscle of the rat, guinea pig, rabbit, dog, and pig, and in mm. erectores trunci and m. vastus lateralis in man. Several high-ionic-strength media were first tested to achieve better solubilization of AChE from rat muscles than by the usual 1 M NaCl-Triton X-100 medium. Ninety-five percent of the AChE from the motor endplate region of the rat diaphragm was solubilized in a single extraction step by medium containing 1 M lithium chloride instead of NaCl. Homologous molecular forms of AChE were found in all species. The asymmetric forms were invariably present in the endplate regions of muscles but their activity in endplate-free regions was much lower than in endplate regions in all investigated mammals except in man. Essentially the same pattern of AChE molecular forms was present in both regions in human muscles. High extrajunctional activity of the asymmetric forms makes human muscles similar to immature rodent muscles in vivo and in culture. The pattern of AChE molecular forms in the endplate region of the diaphragm in senile 24-month-old rats was not significantly different from that in 3-month-old animals. The persistence of the asymmetric AChE forms in the diaphragm of senile rats suggests that neuromuscular interactions do not become deficient with age in this muscle.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jnr.490140109DOI Listing

Publication Analysis

Top Keywords

molecular forms
20
ache molecular
12
forms
8
endplate-free regions
8
endplate region
8
asymmetric forms
8
endplate regions
8
pattern ache
8
human muscles
8
diaphragm senile
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!