Alkaline cesium chloride gradient analysis of in vivo [3H]bromodeoxyuridine-labeled and in vitro [alpha-32P]dCTP-labeled DNA was used to determine whether in vitro DNA synthesis in regenerating rat liver nuclei and nuclear matrices continued from sites of replication initiated in vivo. At least 70 and 50% of the products of total nuclear and matrix-bound in vitro DNA synthesis, respectively, were continuations of in vivo initiated replicational forks. The relationship of the in vitro DNA synthetic sites in total nuclei versus the nuclear matrix was examined by using [3H]bromodeoxyuridine triphosphate to density label in vitro synthesized DNA in isolated nuclei and [alpha-32P]dCTP to label DNA synthesized in isolated nuclear matrix. A minimum of about 40% of matrix-bound DNA synthesis continued from sites being used in vitro by isolated nuclei. Furthermore, nuclear matrices prepared from in vitro labeled nuclei were 5-fold enriched in DNA synthesized by the nuclei and were several-fold enriched, compared to total nuclear DNA, in a particularly high density labeled population of DNA molecules.

Download full-text PDF

Source
http://dx.doi.org/10.1016/0167-4781(85)90020-xDOI Listing

Publication Analysis

Top Keywords

dna synthesis
16
nuclear matrix
12
vitro dna
12
dna
11
replicational forks
8
nuclei nuclear
8
nuclear matrices
8
continued sites
8
total nuclear
8
isolated nuclei
8

Similar Publications

1,3,4-Oxadiazole-based heterocyclic analogs (3a-3m) were synthesized cyclization of Schiff bases with substituted aldehydes in the presence of bromine and acetic acid. The structural clarification of synthesized molecules was carried out with various spectroscopic techniques such as FT-IR,H and C-NMR, UV-visible spectroscopy, and mass spectrometry. antifungal activity was performed against , and and analogs 3g, 3i, and 3m showed potent MIC at 200 µg/ml and excellent ZOI measurements of 17-21 nm.

View Article and Find Full Text PDF

Novel Pt (II) Complexes With Anticancer Activity Against Pancreatic Ductal Adenocarcinoma Cells.

Bioinorg Chem Appl

December 2024

Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Lecce, Via Monteroni I-73100, Italy.

Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive type of solid tumor that is becoming more common. -[PtCl (NH)] (in short cisplatin or CDDP) has been shown to be effective in treating various cancers, including PDAC. However, the development of resistance to chemotherapy drugs has created a need for the synthesis of new anticancer agents.

View Article and Find Full Text PDF

Palladium-catalyzed reactions between imidazo[1,2-]pyridine derivatives and 4-bromo-2,2-dialkyl-substituted 2-chromenes under microwave irradiation at 100 W, 120 °C for 20-30 min provided a series of new 3-(2,2-dialkyl-2-chromen-4-yl)-2-phenylimidazo[1,2-]pyridine derivatives in good to excellent yields. The structures of the synthesized compounds were confirmed through spectroscopic techniques (NMR and HRMS). The X-ray single-crystal structure of compound 16e was also determined.

View Article and Find Full Text PDF

Background: Four species support recreational and commercial fisheries along the U.S. Atlantic Ocean and the Gulf of Mexico, with the Gulf of Mexico stock being overfished for over three decades.

View Article and Find Full Text PDF

Directed evolution of peroxidase DNAzymes by a function-based approach.

Biol Methods Protoc

December 2024

School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, P.R. China.

Peroxidase DNAzymes are single-stranded, stable G-quadruplexes structures that exhibit catalytic activity with cofactor hemin. This class of DNAzymes offers several advantages over traditional protein and RNA catalysts, including thermal stability, resistance to hydrolysis, and easy of synthesis in the laboratory. However, their use in medicine, biology, and chemistry is limited due to their low catalytic rates.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!