Severity: Warning
Message: fopen(/var/lib/php/sessions/ci_session78uprl9o3131soutl7d81c5e4sc4r1l7): Failed to open stream: No space left on device
Filename: drivers/Session_files_driver.php
Line Number: 177
Backtrace:
File: /var/www/html/index.php
Line: 316
Function: require_once
Severity: Warning
Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)
Filename: Session/Session.php
Line Number: 137
Backtrace:
File: /var/www/html/index.php
Line: 316
Function: require_once
Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1057
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3175
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Polaritonic crystals - periodic structures where the hybrid light-matter waves called polaritons can form Bloch states - promise a deeply subdiffractional nanolight manipulation and enhanced light-matter interaction. In particular, polaritons in van der Waals materials boast extreme field confinement and long lifetimes allowing for the exploitation of wave phenomena at the nanoscale. However, in conventionally patterned nanostructures, polaritons are prone to severe scattering loss at the sharp material edges, making it challenging to create functional polaritonic crystals. Here, we introduce a concept of a polaritonic Fourier crystal based on a harmonic modulation of the polariton momentum in a pristine polaritonic waveguide with minimal scattering. We employ hexagonal boron nitride (hBN) and near-field imaging to reveal a neat and well-defined band structure of phonon-polaritons in the Fourier crystal, stemming from the dominant excitation of the first-order Bloch mode. Furthermore, we show that the fundamental Bloch mode possesses a polaritonic bandgap even in the relatively lossy naturally abundant hBN. Thus, our work provides an alternative paradigm for polaritonic crystals essential for enhanced light-matter interaction, dispersion engineering, and nanolight guiding.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/s41467-025-57748-z | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!